

Deep Learning Group Project

Manipal Sidhu
School of Engineering

Technology and Applied Science
Centennial College

Toronto, Ontario, Canada
msidhu45@my.centennialcollege

.ca

Mahpara Rafia Radmy

School of Engineering

Technology and Applied Science
Centennial College

Toronto, Ontario, Canada
mradmy@my.centennialcollege.c

a

Ronald Saenz Huerta
School of Engineering

Technology and Applied Science
Centennial College

Toronto, Ontario, Canada
rsaenzhu@my.centennialcollege.

ca

Mohammed Assem
School of Engineering

Technology and Applied Science
Centennial College

Toronto, Ontario, Canada
massem@my.centennialcollege.c

a

I. INTRODUCTION

The dataset we used for this paper was the 2019

edition of iWildCam images from the sixth Fine-Grained Visual

Categorization (FGVC6) workshop. It consists of photographs

of animals in the wild that were taken by camera traps. A

camera trap is a camera that takes a picture when it detects any

movement and is thus used to monitor biodiversity in areas like

forests. Our dataset contains photographs of animals taken by

cameras in The American Southwest and the American

Northwest.

We ran 3 different experiments on our dataset. The

first experiment involved supervised learning. We built a

Convolutional Neural Network and trained it to recognize and

classify photographs of animals in our dataset. The second

experiment involved unsupervised learning. Specifically, we

used a pair of generative adversarial networks to generate fake

images of different animals. The third experiment we ran

involved using the state-of-the-art InceptionV3Inception v3

model. We built a Convolutional Neural Network and trained it

to recognize and classify photographs of animals of our dataset

using transfer learning from the pre-trained InceptionV3 model.

II. METHODOLOGY

A. Dataset

Dataset for training have retrieved from Kaggle dataset:

https://www.kaggle.com/c/iwildcam-2019-fgvc6

The dataset called “iWildCam 2019 - FGVC6” consists of
images of animals with labels indicating the type of animal:
deer, opossum, raccoon, fox, coyote, etc.

The original (training) dataset includes 196,299 images from
100 locations in Southern California.

The pixel value range is 0-255

Here are the input dataset and a sample image from the
dataset:

License: CC0: Public Domain

B. Data Preprocessing

After performing data exploration, we learned a few facts
about our data. For example, we learned that there were 23
classes of animals labeled, with one class being labeled ‘empty’
for photos without animals. We also noticed that 131,457 of the
196,299 images in our dataset were empty.

In other words, the dataset was unbalanced. So, we removed all
the empty photographs. Another good reason to remove empty
photographs is that they did not contain any relevant
information.

Features with information that was not useful were also
deleted from our data. The only features we kept were the
images, labels, and their respective file names.

C. Supervised Learning Experiment

Parameters and Data Preparation:

 Our experiment employed TensorFlow and Keras for
building a CNN model for image classification. The dataset,
sourced from a CSV file, comprised images of wildlife. We
initially cleaned the data by dropping irrelevant columns such as
‘date_captured’, ‘frame_num’, ‘id’, etc. and examined the
distribution of image dimensions and categories.

Labeling and Data Balancing:

We mapped numeric category IDs to wildlife species names
for interpretability. To address class imbalance, we employed

mailto:msidhu45@my.centennialcollege.ca
mailto:msidhu45@my.centennialcollege.ca
mailto:mradmy@my.centennialcollege.ca
mailto:mradmy@my.centennialcollege.ca
https://www.kaggle.com/c/iwildcam-2019-fgvc6

down sampling and ensuring each category was equally
represented. The dataset was stratified split into training,
validation and testing sets with careful attention to maintaining
class proportionality in each split. The split ratios were 80%,
10%, and 10% respectively.

Image Preprocessing:

Images were resized to a uniform dimension and normalized
for model input. Categorical encoding was applied to the labels
for compatibility with our CNN model. Images were
compressed to (32, 32, 3). We scale the images’ pixel value into
0-1 by diving all pixel value with 255. For our labels, we one-
hot encoded them.

Model Architecture:

The CNN model consists of a sequence of layers designed
for efficient feature extraction and classification from wildlife
images. The initial layer of the model is a Convolutional 2D
(Conv2D) layer with 64 filters, a kernel size of 3x3, and 'same'
padding, which helps in capturing the spatial features from the
images. This layer is followed by a dropout layer with a rate of
35% to reduce the risk of overfitting. Subsequently, the model
includes another Conv2D layer, this time with 128 filters,
maintaining the same kernel size and padding. This layer is
designed to further refine the features extracted by the previous
layer. Following this layer, another dropout layer is introduced,
with a higher rate of 45%, to further mitigate overfitting. Each
of these Conv2D layers is followed by a MaxPooling2D layer
with a pool size of 2x2. These pooling layers serve to down
sample the feature maps, reducing their dimensions and the
overall computational complexity. After the convolutional and
pooling layers, the model includes a Flatten layer, which
converts the pooled feature maps into a one-dimensional vector.
This is crucial for transitioning from convolutional layers to
dense layers. Next, there is a Dense layer with 1024 neurons,
which acts as a fully connected layer in the network. This layer
is accompanied by a significant drop out of 75%, aiming to
prevent overfitting while maintaining substantial model
complexity. The final layer of the model is another Dense layer,
which corresponds to the number of categories in the wildlife
dataset. This layer uses a SoftMax activation function, making
it suitable for multi-class classification tasks.

Training and Evaluation:

The model is trained on wildlife images for 150 epochs with
a batch size of 64, employing Early Stopping to prevent
overfitting. Post-training, its performance was evaluated on
separate test and validation sets to assess generalization
capabilities. Accuracy metrics were particularly emphasized and
the best model configurations were saved for reproducibility and
future reference.

Hyperparameter Tuning and Model Predictions:

We utilized Keras Tuner for hyperparameter optimization,
fine-tuning aspects like units, activation functions, dropout rates
and saving the best parameters for consistency. The model's
efficacy was demonstrated through predictions on test images,
highlighting true vs. predicted labels, with accuracy metrics and
detailed results recorded in CSV files for comprehensive
analysis.

D. Unsupervised Learning Experiment - GAN

For the unsupervised learning experiment, a pair of generative

adversarial networks were used to generate images of animals.

More specifically, the generator model was used to generate

images. We experimented with a few different types of

sequential models before settling on the architecture we chose.

We also tried a few different architectures for the

discriminator model before choosing its architecture.
Parameters and Data Preparation:

 Our experiment employed TensorFlow and Keras for
building a generator and discriminator model for image
generation. The dataset, sourced from a CSV file, comprised
images of wildlife. We initially cleaned the data by dropping
irrelevant columns such as ‘date_captured’, ‘frame_num’, ‘id’,
etc. and examined the distribution of image dimensions and
categories.

 We split the dataset into the animal’s categories like deer,
opossum, coyote, etc., to try to generate new animal images for
each category.

Image Preprocessing:

Images were resized to a uniform dimension and normalized
for model input. Categorical encoding was applied to the labels
for compatibility with our CNN model. Images were
compressed to (64, 64, 3). We scale the images’ pixel value into
-1 +1 by diving all pixel value with 127.5. It was necessary to
use data augmentation to generate more training images. We
apply random cropping techniques. We prepared 25000 images
in total for our generative model.

Model Architecture:

The GAN model consists of two parts: generator and
discriminator. We utilized TensorFlow and Keras to build those
models using CNN.

The generator model for 64x64 images in a GAN starts with
a dense layer, transforming a 100-dimensional noise vector into
a 4x4 feature map with 1024 channels. Batch normalization and
Leaky ReLU activation ensure stable training. A reshape layer
prepares for upsampling, using Conv2DTranspose layers to
progressively increase spatial dimensions from 4x4 to 64x64.
The final Conv2DTranspose layer outputs RGB images with a
tanh activation. This architecture enables the generator to
produce realistic high-resolution images through the GAN
training process.

The discriminator model for 64x64 images in a GAN is
designed to distinguish between real and generated images. It
follows a series of convolutional layers to downsample the input
images and identify key features. It initiates with a Conv2D
layer with 64 filters, a 5x5 kernel size, and a stride of 2,
processing the 64x64 RGB images. The Leaky ReLU activation
introduces non-linearity, while dropout layers help prevent
overfitting. The model outputs a single neuron (1D vector)
representing the probability of the input being a real image. The
absence of an activation function in the output layer is
intentional, as the loss function will handle the necessary
activation. This architecture enables the discriminator to

effectively discern between real and generated images during
the GAN training process.

We used an Adam optimizer with a learning rate of 0.0002

and a beta-1 value equal to 0.5 for both the generator and the

discriminator.
Training and Evaluation:

The model is trained on wildlife images for 100 epochs with
a batch size of 64, and a latent dimension of 100. Post-training,
its performance was evaluated on separate test and validation
sets to assess generalization capabilities. Loss metrics were
particularly emphasized, and the model configurations were
saved for reproducibility and future reference.

E. Transfer Learning from State-of-the-Art Model

Experiment – InceptionV3

 Parameters and Data Preparation:

We initialized our experiment by setting up the necessary
parameters for image processing. This included image resizing
to fit the InceptionV3 model's expected input dimensions (75x75
pixels) and preprocessing to match the model's training
conditions.

 Label Encoding and Stratification:

Each image was labeled with a corresponding category from
a predefined set of wildlife classes. Labels were encoded as
integers and then converted to one-hot vectors to facilitate the
classification process. To ensure the model's ability to
generalize, we employed stratified sampling to maintain an even
distribution of classes within the training, validation, and test
datasets.

 Transfer Learning Framework:

We utilized the InceptionV3 model, which has been pre-
trained on ImageNet, as a feature extractor. The base model was
loaded without its top layer to allow for the integration of custom
dense layers designed for our classification task. A Global
Average Pooling layer was appended to condense the feature
maps followed by a dense layer with 1024 neurons and ReLU
activation. The final layer consisted of a SoftMax activation
function with a neuron for each wildlife category, providing a
probability distribution over the classes.

Model Training and Validation:

The composite model is compiled with an Adam optimizer
and categorical cross-entropy loss function. We trained the
model for 60 epochs with a batch size of 64. An EarlyStopping
callback was utilized to halt training if the validation accuracy
did not improve, mitigating overfitting. The training progress
was visualized by plotting the accuracy and loss for each epoch.

III. RESULTS

A. Supervised Learning Experiment

The model demonstrated a high training accuracy of 99%
with a loss converging close to zero which indicates a strong fit
to the training data. It achieved 76.7% on validation and 81.2%
on the test set, reflecting effective generalization despite some
signs of overfitting. The higher test accuracy suggests the
model’s potential robustness in real-world applications.

B. Unsupervised Learning Experiment - GAN

The generator model did not generate very good images of
deer. We suspect that the images would have gotten clearer with
more training epochs and perhaps more computational power.

We tried to generate new images using the animal Opossum,
but the results were not good enough because most of the photos
were taken at night. The grayscale generates some problems in
unsupervised models. Then, we tried with animal Deer, and the
results were better.

C. Transfer Learning from State-of-the-Art Model

Experiment – InceptionV3

The InceptionV3-based transfer learning model achieved a

peak training accuracy of 76%, with the validation and test

accuracies reaching approximately 63% and 64% respectively.

The accuracy and loss plots indicate learning with potential

volatility, suggesting further model tuning might be beneficial

to enhance stability and performance.

D. Performance of all 3 experiments

Curiously, the convolutional neural network built during the

supervised learning experiment performed worse with transfer

learning than without. Meanwhile, the unsupervised learning

experiment produced the worst results.

IV. CONTRIBUTION

A. Manipal Sidhu

• Supervised Learning Model

• State-of-the-art Model

• Report and Presentation

B. Mahpara Rafia Radmy

• State-of-the-art Model

• Report and Presentation

C. Ronald Saenz Huerta

• Unsupervised Learning Model

• Data Processing

D. Mohamed Assem

• Data Exploration

• Report and Presentation

V. REFERENCES

[1] K. Team, “Keras Documentation: Inceptionv3,” Keras,
https://keras.io/api/applications/inceptionv3/ (accessed Dec. 12, 2023).

[2] CVPR2019, https://cvpr2019.thecvf.com/ (accessed Dec. 12, 2023).

[3] “The IWILDCAM 2019 challenge dataset - arxiv.org,” kaggle.com,
https://arxiv.org/pdf/1907.07617v1 (accessed Dec. 12, 2023).

