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I. INTRODUCTION  

The dataset we used for this paper was the 2019 

edition of iWildCam images from the sixth Fine-Grained Visual 

Categorization (FGVC6) workshop. It consists of photographs 

of animals in the wild that were taken by camera traps. A 

camera trap is a camera that takes a picture when it detects any 

movement and is thus used to monitor biodiversity in areas like 

forests. Our dataset contains photographs of animals taken by 

cameras in The American Southwest and the American 

Northwest. 

We ran 3 different experiments on our dataset. The 

first experiment involved supervised learning. We built a 

Convolutional Neural Network and trained it to recognize and 

classify photographs of animals in our dataset. The second 

experiment involved unsupervised learning. Specifically, we 

used a pair of generative adversarial networks to generate fake 

images of different animals. The third experiment we ran 

involved using the state-of-the-art InceptionV3Inception v3 

model. We built a Convolutional Neural Network and trained it 

to recognize and classify photographs of animals of our dataset 

using transfer learning from the pre-trained InceptionV3 model.  

II. METHODOLOGY 

A. Dataset 

 
Dataset for training have retrieved from Kaggle dataset: 

https://www.kaggle.com/c/iwildcam-2019-fgvc6 

The dataset called “iWildCam 2019 - FGVC6” consists of 
images of animals with labels indicating the type of animal: 
deer, opossum, raccoon, fox, coyote, etc. 

The original (training) dataset includes 196,299 images from 
100 locations in Southern California. 

The pixel value range is 0-255 

 

 

 

Here are the input dataset and a sample image from the 
dataset: 

          

License: CC0: Public Domain 

 

B. Data Preprocessing 

After performing data exploration, we learned a few facts 
about our data. For example, we learned that there were 23 
classes of animals labeled, with one class being labeled ‘empty’ 
for photos without animals. We also noticed that 131,457 of the 
196,299 images in our dataset were empty.  

In other words, the dataset was unbalanced. So, we removed all 
the empty photographs. Another good reason to remove empty 
photographs is that they did not contain any relevant 
information. 

Features with information that was not useful were also 
deleted from our data. The only features we kept were the 
images, labels, and their respective file names.   

C. Supervised Learning Experiment 

Parameters and Data Preparation: 

 Our experiment employed TensorFlow and Keras for 
building a CNN model for image classification. The dataset, 
sourced from a CSV file, comprised images of wildlife. We 
initially cleaned the data by dropping irrelevant columns such as 
‘date_captured’, ‘frame_num’, ‘id’, etc. and examined the 
distribution of image dimensions and categories. 

Labeling and Data Balancing: 

We mapped numeric category IDs to wildlife species names 
for interpretability. To address class imbalance, we employed 
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down sampling and ensuring each category was equally 
represented. The dataset was stratified split into training, 
validation and testing sets with careful attention to maintaining 
class proportionality in each split. The split ratios were 80%, 
10%, and 10% respectively. 

Image Preprocessing: 

Images were resized to a uniform dimension and normalized 
for model input. Categorical encoding was applied to the labels 
for compatibility with our CNN model. Images were 
compressed to (32, 32, 3). We scale the images’ pixel value into 
0-1 by diving all pixel value with 255. For our labels, we one-
hot encoded them. 

Model Architecture: 

The CNN model consists of a sequence of layers designed 
for efficient feature extraction and classification from wildlife 
images. The initial layer of the model is a Convolutional 2D 
(Conv2D) layer with 64 filters, a kernel size of 3x3, and 'same' 
padding, which helps in capturing the spatial features from the 
images. This layer is followed by a dropout layer with a rate of 
35% to reduce the risk of overfitting. Subsequently, the model 
includes another Conv2D layer, this time with 128 filters, 
maintaining the same kernel size and padding. This layer is 
designed to further refine the features extracted by the previous 
layer. Following this layer, another dropout layer is introduced, 
with a higher rate of 45%, to further mitigate overfitting. Each 
of these Conv2D layers is followed by a MaxPooling2D layer 
with a pool size of 2x2. These pooling layers serve to down 
sample the feature maps, reducing their dimensions and the 
overall computational complexity. After the convolutional and 
pooling layers, the model includes a Flatten layer, which 
converts the pooled feature maps into a one-dimensional vector. 
This is crucial for transitioning from convolutional layers to 
dense layers. Next, there is a Dense layer with 1024 neurons, 
which acts as a fully connected layer in the network. This layer 
is accompanied by a significant drop out of 75%, aiming to 
prevent overfitting while maintaining substantial model 
complexity. The final layer of the model is another Dense layer, 
which corresponds to the number of categories in the wildlife 
dataset. This layer uses a SoftMax activation function, making 
it suitable for multi-class classification tasks. 

Training and Evaluation: 

The model is trained on wildlife images for 150 epochs with 
a batch size of 64, employing Early Stopping to prevent 
overfitting. Post-training, its performance was evaluated on 
separate test and validation sets to assess generalization 
capabilities. Accuracy metrics were particularly emphasized and 
the best model configurations were saved for reproducibility and 
future reference. 

Hyperparameter Tuning and Model Predictions: 

We utilized Keras Tuner for hyperparameter optimization, 
fine-tuning aspects like units, activation functions, dropout rates 
and saving the best parameters for consistency. The model's 
efficacy was demonstrated through predictions on test images, 
highlighting true vs. predicted labels, with accuracy metrics and 
detailed results recorded in CSV files for comprehensive 
analysis. 

D. Unsupervised Learning Experiment - GAN 

For the unsupervised learning experiment, a pair of generative 

adversarial networks were used to generate images of animals. 

More specifically, the generator model was used to generate 

images. We experimented with a few different types of 

sequential models before settling on the architecture we chose. 

We also tried a few different architectures for the 

discriminator model before choosing its architecture.  
Parameters and Data Preparation: 

 Our experiment employed TensorFlow and Keras for 
building a generator and discriminator model for image 
generation. The dataset, sourced from a CSV file, comprised 
images of wildlife. We initially cleaned the data by dropping 
irrelevant columns such as ‘date_captured’, ‘frame_num’, ‘id’, 
etc. and examined the distribution of image dimensions and 
categories. 

 We split the dataset into the animal’s categories like deer, 
opossum, coyote, etc., to try to generate new animal images for 
each category. 

Image Preprocessing: 

Images were resized to a uniform dimension and normalized 
for model input. Categorical encoding was applied to the labels 
for compatibility with our CNN model. Images were 
compressed to (64, 64, 3). We scale the images’ pixel value into 
-1 +1 by diving all pixel value with 127.5. It was necessary to 
use data augmentation to generate more training images. We 
apply random cropping techniques. We prepared 25000 images 
in total for our generative model. 

Model Architecture: 

The GAN model consists of  two parts: generator and 
discriminator. We utilized TensorFlow and Keras to build those 
models using CNN.  

The generator model for 64x64 images in a GAN starts with 
a dense layer, transforming a 100-dimensional noise vector into 
a 4x4 feature map with 1024 channels. Batch normalization and 
Leaky ReLU activation ensure stable training. A reshape layer 
prepares for upsampling, using Conv2DTranspose layers to 
progressively increase spatial dimensions from 4x4 to 64x64. 
The final Conv2DTranspose layer outputs RGB images with a 
tanh activation. This architecture enables the generator to 
produce realistic high-resolution images through the GAN 
training process. 

The discriminator model for 64x64 images in a GAN is 
designed to distinguish between real and generated images. It 
follows a series of convolutional layers to downsample the input 
images and identify key features. It initiates with a Conv2D 
layer with 64 filters, a 5x5 kernel size, and a stride of 2, 
processing the 64x64 RGB images. The Leaky ReLU activation 
introduces non-linearity, while dropout layers help prevent 
overfitting. The model outputs a single neuron (1D vector) 
representing the probability of the input being a real image. The 
absence of an activation function in the output layer is 
intentional, as the loss function will handle the necessary 
activation. This architecture enables the discriminator to 



effectively discern between real and generated images during 
the GAN training process. 

We used an Adam optimizer with a learning rate of 0.0002 

and a beta-1 value equal to 0.5 for both the generator and the 

discriminator.  
Training and Evaluation: 

The model is trained on wildlife images for 100 epochs with 
a batch size of 64, and a latent dimension of 100. Post-training, 
its performance was evaluated on separate test and validation 
sets to assess generalization capabilities. Loss metrics were 
particularly emphasized, and the model configurations were 
saved for reproducibility and future reference. 

E. Transfer Learning from State-of-the-Art Model 

Experiment – InceptionV3 

 Parameters and Data Preparation: 

We initialized our experiment by setting up the necessary 
parameters for image processing. This included image resizing 
to fit the InceptionV3 model's expected input dimensions (75x75 
pixels) and preprocessing to match the model's training 
conditions. 

 Label Encoding and Stratification: 

Each image was labeled with a corresponding category from 
a predefined set of wildlife classes. Labels were encoded as 
integers and then converted to one-hot vectors to facilitate the 
classification process. To ensure the model's ability to 
generalize, we employed stratified sampling to maintain an even 
distribution of classes within the training, validation, and test 
datasets. 

 Transfer Learning Framework: 

We utilized the InceptionV3 model, which has been pre-
trained on ImageNet, as a feature extractor. The base model was 
loaded without its top layer to allow for the integration of custom 
dense layers designed for our classification task. A Global 
Average Pooling layer was appended to condense the feature 
maps followed by a dense layer with 1024 neurons and ReLU 
activation. The final layer consisted of a SoftMax activation 
function with a neuron for each wildlife category, providing a 
probability distribution over the classes. 

Model Training and Validation: 

The composite model is compiled with an Adam optimizer 
and categorical cross-entropy loss function. We trained the 
model for 60 epochs with a batch size of 64. An EarlyStopping 
callback was utilized to halt training if the validation accuracy 
did not improve, mitigating overfitting. The training progress 
was visualized by plotting the accuracy and loss for each epoch. 

III. RESULTS 

A. Supervised Learning Experiment 

The model demonstrated a high training accuracy of 99% 
with a loss converging close to zero which indicates a strong fit 
to the training data. It achieved 76.7% on validation and 81.2% 
on the test set, reflecting effective generalization despite some 
signs of overfitting. The higher test accuracy suggests the 
model’s potential robustness in real-world applications. 

      

B. Unsupervised Learning Experiment - GAN 

The generator model did not generate very good images of 
deer. We suspect that the images would have gotten clearer with 
more training epochs and perhaps more computational power. 

We tried to generate new images using the animal Opossum, 
but the results were not good enough because most of the photos 
were taken at night. The grayscale generates some problems in 
unsupervised models. Then, we tried with animal Deer, and the 
results were better. 

    

C. Transfer Learning from State-of-the-Art Model 

Experiment – InceptionV3 

The InceptionV3-based transfer learning model achieved a 

peak training accuracy of 76%, with the validation and test 

accuracies reaching approximately 63% and 64% respectively. 

The accuracy and loss plots indicate learning with potential 

volatility, suggesting further model tuning might be beneficial 

to enhance stability and performance. 

       

D. Performance of all 3 experiments 

Curiously, the convolutional neural network built during the 

supervised learning experiment performed worse with transfer 

learning than without. Meanwhile, the unsupervised learning 

experiment produced the worst results. 
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