

Natural Language Processing (NLP) & Recommender

System

Project Report - Sentiment Analysis Model

Group 5:

Manipal Sidhu

Mahpara Rafia Radmy

Ronald Saenz Huerta

Kanishka Dhir

Prepared for:

Professor Mayy Habayeb

Table of contents

1. Phase 1 .. 4

1.1. Data Exploration ... 4

1.1.1. Dataset Info ... 4

1.1.2. Descriptive Statistics ... 5

1.1.3. Correlation Analysis .. 5

1.1.4. Distribution Of Ratings and Reviews ... 6

1.1.5. Conclusion ... 7

1.2. Dataset Pre-processing ... 7

1.2.1. Basic Dataset Pre-processing .. 8

1.2.2. Dataset Pre-processing for TextBlob model ... 10

1.2.3. Dataset Pre-processing for VADER model .. 12

1.3. Models .. 12

1.3.1. TextBlob .. 12

1.3.2. Valence Aware Dictionary and Sentiment Reasoner (VADER) .. 15

1.4. Testing results summary ... 17

1.4.1. TextBlob .. 17

1.4.2. Vader ... 17

1.4.3. Model Comparison .. 18

1.5. Final Conclusion .. 19

2. Phase 2 .. 20

2.1. Machine Learning Approach ... 20

2.2. Data Pre-processing: ... 21

2.2.1. Basic Pre-processing: .. 21

2.2.2. Data Distribution: .. 21

2.2.3. TextBlob: ... 21

2.2.4. VADER: .. 22

2.2.5. Machine Learning:... 22

2.3. Machine Learning Models Declaration ... 27

2.3.1. Logistic Regression .. 27

2.3.2. Support Vector Machine (SVM) .. 27

2.3.3. Naive Bayes ... 27

2.3.4. Gradient Boosting ... 27

2.4. Machine Learning Models Results .. 28

2.4.1. Logistic Regression: ... 28

2.4.2. Support Vector Machine (SVM): ... 28

2.4.3. Naive Bayes: .. 29

2.4.4. Gradient Boosting: .. 29

2.4.5. Model Results.. 29

2.5. Machine Learning Models vs Lexicon Models .. 31

2.6. Research Paper- Recommender systems based on user reviews: the state of the art 32

2.6.1. Pseudo Code: .. 32

2.6.2. Diagram: .. 33

2.7. Final Conclusion .. 36

3. References .. 37

4. Appendix 1: Project plan ... 38

1. Phase 1

1.1. Data Exploration

1.1.1. Dataset Info

The dataset under consideration comprises customer reviews for gift cards. It

encapsulates a variety of information pertaining to reviews, reviewers, and products. It

encompasses 2,972 reviews for 148 unique gift card products and provides a comprehensive

insight into customer sentiments and opinions. Each review was contributed by one of the 458

distinct reviewers. On average, products have received a high rating of approximately 4.89 with

2,838 reviews being verified and each review fetching around 5.16 votes. The dataset is organized

across 12 different columns, each serving a specific purpose. The “overall” column reflects the

numerical rating given to a product, while “verified” indicates whether a review is authenticated.

The dataset also records textual details with columns like “reviewerID” capturing the unique

identifier of a reviewer, and “asin” pinpointing the specific gift card product. Other descriptors

such as “reviewerName”, “reviewText”, “summary”, “image”, “style”, and “reviewTime” further

enrich the dataset by offering nuanced insights into the reviewer’s identity, sentiments, and the

timing of the review. Lastly, the “unixReviewTime” column provides a timestamp for each review,

and the “vote” column quantifies the popularity or impact of a review through the number of

votes it has garnered.

1.1.2. Descriptive Statistics

 The descriptive statistics shed light on the dataset's attributes. With 2,972 reviews

captured, the average rating sits at a commendable 4.88 on a 5-point scale. Reviews span across

various timestamps, with "unixReviewTime" falling between 1.33e+09 and 1.53e+09. Notably,

out of all reviews, 208 have been actively engaged with, averaging 5.16 votes each.

1.1.3. Correlation Analysis

 The heatmap shows the correlation between three columns (overall, vote,

unixReviewTime). Specifically, there’s a mild negative association between ‘overall’ ratings and

‘vote’, denoted by a -0.16 correlation. Furthermore, the connection between ‘overall’ ratings and

‘unixReviewTime’ is very slight almost negligible at -0.0084. Lastly, ‘vote’ and ‘unixReviewTime’

also exhibit a negative relationship with a correlation of -0.15, hinting that as the review time

progresses, there might be a slight decrease in the votes.

1.1.4. Distribution Of Ratings and Reviews

 The graph shows how people rated from 1 to 5. Most people, about 93% (2,752 out of

2,972), gave a 5-star rating, showing they were very happy. Only about 0.74% (22 out of 2,972)

gave a 1-star rating, 0.37% (11 out of 2,972) gave a 2-star, and 1.11% (33 out of 2,972) gave a 3-

star rating. A slightly larger group, about 5.18% (154 out of 2,972), gave a 4-star rating. So, the

majority had a great experience. The average rating or score in the "overall" column is

approximately 4.89.

 The graph displays the distribution of verified versus non-verified reviews. About 95.5%

(2,838 out of 2,972) of the reviews are verified, showing a high level of authenticity or validation

in the review process. The remaining 4.5% (134 out of 2,972) of the reviews are not verified.

1.1.5. Conclusion

 The data exploration reveals a predominantly positive sentiment from the reviewers. The

combination of a high average rating with the substantial proportion of verified reviews suggests

that the feedback is both positive and credible. The product, service, or content under review

seems to be well-received by its users.

1.2. Dataset Pre-processing

 The data pre-processing is a crucial step in NLP projects to clean, transform, and organize

the data with the goal to prepare for further analysis. The dataset is related to reviews from

Amazon Gift Cards which were written by users with their personal opinions. However, the

dataset could contain noise in the form of special characters, blank spaces, digits, emoticons,

emojis, URLs, and other irrelevant elements, which can impact the performance of NLP, Machine

Learning, or AI models. Therefore, it is necessary to conduct comprehensive dataset

preprocessing to prepare the data for modeling.

1.2.1. Basic Dataset Pre-processing

Firstly, it is necessary to make a basic Dataset Pre-processing to clean, transform, and

organize the data. This step is crucial for modeling because it is necessary to decide what

columns/features should be dropped, modified, merged, or added.

For this project, there are some steps to perform the dataset before modeling:

1. Removed all non-verified records

For this step, it was necessary to check the original dataset which contains a

column called “verified” which is related to the authenticity of the user review. It

could help to determine if the user is a real person or a robot. In the data exploration,

the distribution of Verified and Non-Verified Reviews shows 134 reviews that are not

verified.

2. Dropped unwanted columns

To perform the sentiment analysis processing, it is necessary to drop

unnecessary columns that do not contribute anything. After to analyze the dataset,

there are some columns that should be dropped such as 'verified', 'reviewerID', 'asin',

'reviewerName', 'reviewTime', 'style', 'unixReviewTime', 'vote', and 'image'.

3. Dropped duplicates

To maintain data integrity, it is necessary to eliminate duplicate records. There

are 892 duplicated records that should be eliminated from the dataset.

4. Labeled the data based on the value of “rating of the product”

After to check the original dataset, it contains a column called “overall” which

is associated to the rating of the product. It is a form to categorize each review using

the rating. Consequently, it was necessary to assign a sentiment analysis, using the

following logic: ratings 4 and 5 as “Positive”, rating 3 as “Neutral”, and ratings 1, and

2 as “Negative”

5. Merge both columns “reviewText” and “summary” into a new column called “text”

After to check the original dataset, it contains two columns called

“reviewText” and “summary” that have text related to the user review. The

consolidation of both columns in a new column called “text” help to simplified

subsequent text analysis processes, fostering a more streamlined analytical workflow.

1.2.2. Dataset Pre-processing for TextBlob model

For TextBlob model, it was necessary to make some dataset pre-processing to perform

the dataset.

For this project, there are some steps to perform the dataset before modeling:

1. Exclusion of Special Characters and Digits

This step is necessary to streamline the data, ensuring that the model focused only

in the linguistic that could carry sentiment. Numbers or special characters could be

irrelevant and cause some noise for modeling.

2. Trimming trailing whitespaces

To avoid some noise into the data, it is necessary to trim trailing whitespaces. This

step is necessary to maintain consistency.

3. Punctuation removal

To avoid some noise into the data, it is necessary to remove punctuation. The

punctuation could sometimes distort the meaning of the sentence, and this step fosters

a cleaner analysis. For that reason, this step is crucial to improve the accuracy of the

sentiment analysis.

4. URL elimination

Web links do not contribute to sentiment analysis, for that reason it is necessary

to remove from the text with the goal to improve our data for modeling.

5. Removal of Stop Words

In sentiment analysis, some words such as “a”, “the”, and “is” have limited

semantic meaning and could be disregarder. For that reason, is necessary to eliminate

common and non-informative words know such as “stop words”.

6. Expanding contractions

To perform modeling some expansions of the contractions should be used to

enable the understanding of the complete word. With expanding contractions, it could

ensure that words like “can’t” were transformed into “cannot”.

7. Tokenization

To make it more amenable for analysis, it was necessary to use tokenization which

is crucial to breaks down text into its basic elements.

8. Rejoining Tokens

Post tokenization, the individual token should be reassembled into coherent text.

After to make data pre-processing, the text is ready to sentiment analysis. Lemmatization

and lowercase are not necessary to apply because TextBlob was embedded those steps.

1.2.3. Dataset Pre-processing for VADER model

 For VADER model, it is not necessary to do data pre-processing because it is specifically

designed for sentiment analysis for social media posts. It is well-suited for processing short and

informal textual data. It can effectively analyze the sentiment intensity and polarity of the text.

VADER provides a proper handling of sentences with:

• Typical negations

• Use of contractions as negations

• Use of punctuation as signal of increment of the sentiment intensity

• Use of word-shape (ALL CAPS) as signal of emphasis

• Use of degree modifiers as alteration of the sentiment intensity

• Use of the slang words

• Use of emoticons and emojis

• Use of the initialisms and acronyms.

 For that reason, the pre-processing was not required.

1.3. Models

1.3.1. TextBlob

 TextBlob is a Python library for basic natural language processing (NLP) tasks. It offers a

simple API for common tasks like tokenization, part-of-speech tagging, noun phrase extraction,

and sentiment analysis. TextBlob Built on the NLTK and another package called Pattern, TextBlob

provides an easy-to-use interface in NLP.

1.3.1.1. Assumptions/Heuristics/algorithms used

 The TextBlob by default uses the Pattern library for its sentiment analysis. Pattern’s

sentiment analysis is built on large dataset annotated with polarity and subjectivity. Sentiment

of a text is calculated based on the words it contains and their respective subjectivity and polarity.

Alternate to pattern we can use Naive Bayes classifier trained using NLTK on a movie

review corpus. This method uses the probabilities of observing specific words given their

sentiment labels.

We assume that polarity of text in range of –0.2 to +0.2 will have sentiment neutral

whereas polarity of text greater than +0.2 will have positive and less than –0.2 will have negative

sentiment.

1.3.1.2. How it works

 TextBlob is a Python library for processing textual data, and it provides a simple API for

diving into common natural language processing (NLP) tasks.

 TextBlob first Tokenize and preprocesses data (removing stop words, lowercasing etc.),

and then TextBlob can tag each token with its corresponding Part-Of-Speech like noun, verb, etc.

We can also call this as a feature extraction in which we convert the tokenized words into features

that model can understand.

The sentiment property of the api/library returns polarity and subjectivity.

Polarity ranges from –1.0 to +1.0 while subjectivity ranges from 0 to +1.0. Polarity

measures the emotion. Where +1.0 refers to positive and –1.0 refers to negative. While

subjectivity refers to opinion or views which needs to analyze in given context where 0 is very

objective and +1.0 is very subjective. A subjective instance may or may not carry any emotion.

1.3.1.3. External Datasets

TextBlob relies on external datasets and resources for various functionalities like:

• Sentiment Analysis-> TextBlob uses the ‘Pattern’ library for sentiment analysis which

comes with a built-in sentiment lexicon. This lexicon is used to determine polarity

(positivity/negativity) and subjectivity of a text. It is not exactly a dataset but rather a

collection of words and their associated sentiment scores.

• POS Tagging and Noun Phrase Extraction-> For these functionalities, TextBlob leverages

corpora and trained models from the Natural Language Toolkit (NLTK). Specifically, it

typically uses the Penn Treebank dataset for POS tagging.

• Tokenization-> TextBlob uses NLTK’s tokenization methods, while not directly relying on

a specific dataset but have been informed and refined by numerous corpora.

• Translation and Language Detection-> TextBlob offloads these tasks to the Google

Translate API. This is not directly about an external dataset, but it is worth noting since

the translation capability relies on an external service.

1.3.2. Valence Aware Dictionary and Sentiment Reasoner (VADER)

 VADER (Valence Aware Dictionary and Sentiment Reasoner) is a lexicon-based sentiment

analysis tool that uses a pre-built dictionary of words and their associated sentiment scores to

determine the sentiment of a given piece of text. Its lexicon is specifically tuned to handle

informal language and features such as slang, emoticons, and capitalization commonly used in

social media text, news articles, blogs etc.

1.3.2.1. Assumptions/Heuristics/algorithms used

 We have Assume that valance score of a text ranging from –0.2 to +0.2 will be count as a

neutral sentiment. Valance score Greater than +0.2 and less than –0.2, we will count as a positive

and negative sentiment respectively.

1.3.2.2. How it works

 VADER relies on a predefined dictionary (or lexicon) that maps words and other

numerous lexical features common to sentiment expression in microblogs.

These features include:

• A full list of Western-style emoticons (ex - :D and :P)

• Sentiment-related acronyms (ex- LOL and ROFL)

• Commonly used slang with sentiment value (ex- Nah and meh)

The valence scores in VADER's lexicon range from -4 (most negative) to +4 (most positive).

The sentiment score of text is calculated as a sum of intensity score of words in the text. Words

that are neutral or have no clear sentiment typically have a score close to 0.

To calculate the composite sentiment score for an entire piece of text, VADER doesn't just

sum up the valence scores of individual words. Instead, it incorporates various heuristics and

rules, including:

• Adjusting scores for booster words (e.g., "very" or "extremely") that can amplify the

sentiment of a neighboring word.

• Handling negations that can reverse the sentiment (e.g., "not good" is negative despite

the word "good" being positive).

• Accounting for the effects of punctuation, capitalization, and other linguistic cues.

After processing the text and applying these rules, VADER produces a compound

sentiment score that ranges from -1 (most negative) to +1 (most positive). This score offers a

holistic view of the text's overall sentiment. In addition to the compound score, VADER also

provides individual scores for the positive, neutral, and negative sentiments present in the text.

1.3.2.3. External Datasets

VADER has its own dataset called vader_lexicon.txt which is validated by multiple

independent human judges. VADER incorporates a "gold-standard" sentiment lexicon that is

especially attuned to microblog-like contexts.

Other than it, VADER also uses external datasets like

• nytEditorialSnippets_GroundTruth.txt

• nytEditorialSnippets_anonDataRatings.txt

• movieReviewSnippets_GroundTruth.txt

• movieReviewSnippets_anonDataRatings.txt

• amazonReviewSnippets_GroundTruth.txt

• amazonReviewSnippets_anonDataRatings.txt

• tweets_GroundTruth.txt,tweets_anonDataRatings.txt

1.4. Testing results summary

 The summary analysis based on the testing outcomes of the two approaches—Vader and

Textblob that we used to develop our model is presented below.

1.4.1. TextBlob

 The TextBlob Model had an accuracy of about 73%, with a precision of 98% for positive

sentiment, 2% for neutral sentiment and 0% for negative sentiment. With a weighted average of

95%.

1.4.2. Vader

 The VADER model had an accuracy of about 88%, with precision of 97% for positive

sentiment, 1% for neutral sentiment and 12% for negative sentiment. With a weighted average

of 95%

1.4.3. Model Comparison

Overall, the Vader model performed the best out of two models, with the highest

accuracy and f1-score for positive sentiment. The Textblob model does not perform as well as

the Vader model, but it still has decent accuracy. One thing we should note is that both models

have identical weighted avg score for precision of about 95%.

In the Original Label Rating, a vast majority of reviews, 969 to be precise and categorized

as positive with a minimal 18 as neutral and 13 as negative. The TextBlob Lexicon Model has

identified 743 reviews as positive, 242 as neutral and 15 as negative. Comparatively, the VADER

Lexicon Model labels 901 reviews as positive, 83 as neutral and 16 as negative. Both the TextBlob

and VADER models depict a higher number of neutral reviews compared to the Original Label.

1.5. Final Conclusion

The data exploration reveals a predominantly positive sentiment from the reviewers. The

combination of a high average rating with the substantial proportion of verified reviews suggests

that the feedback is both positive and credible. The product, service, or content under review

seems to be well-received by its users.

In data preprocessing we include steps regarding handling missing data, removing

duplicates, removing stop-words, combining review text and summary etc. for textblob, whereas

we only use clean text which is combination of review text and summary for VADER as it is. We

dropped columns which are not useful for sentiment analysis like Style, vote, image, and

reviewerName, etc.

Then we perform sentiment analysis using textblob and VADER by categorizing reviews

into positive, negative, and neutral categories based on their ratings.

When comparing the sentiment analysis capabilities of VADER and TextBlob, VADER

clearly emerges as the superior model. It consistently outperforms TextBlob across key metrics,

particularly in accuracy and in identifying positive sentiments. While both models have their

merits, for tasks demanding higher precision and recall, VADER appears to be the more reliable

choice.

2. Phase 2

2.1. Machine Learning Approach

In phase #2 of our project, we focused on implementing and evaluating machine learning

models for sentiment analysis on gift card reviews. Firstly, we prepared the remaining dataset by

cleaning the text, labeling based on ratings. Then, we split it into 200 rows for validation set i.e.

comparing with lexicon approach, and the remaining will be used for training and testing sets.

Then, we split it into training and testing sets, using 70% for training and 30% for testing with

stratified sampling. Our approach involved preprocessing the text data which included removing

HTML tags, converting text to lowercase, removing special characters and stopwords. We then

trained and evaluated several machine learning models, such as Logistic Regression, SVM, Naive

Bayes and Gradient Boosting, using metrics like accuracy, precision, recall and F1 score to select

the best model for predicting sentiment in the test set.

2.2. Data Pre-processing:

2.2.1. Basic Pre-processing:

We have implemented the same data pre-processing steps as in phase #1 (Refer to section

2.1)

2.2.2. Data Distribution:

2.2.2.1. Lexicon Approach Sampling:

After Basic pre-processing, out of 1,946, we selected a subset of 200 reviews for

comparison with Lexicon-based Sentiment Analysis.

2.2.2.2. ML Model Preparation

Reserved remaining 1,746 reviews for Machine Learning models which has been further

split into training set 70% of 1,746 reviews, focusing on model training and optimization and

testing set of remaining 30% of the data, used to evaluate model performance.

There are the Final Dataset Shapes:

• Training Data (ML) = Reviews (X): 1,222 samples & Overall Rating (y): 1,222 samples

• Testing Data (ML) = Reviews (X): 524 samples & Overall Rating (y): 524 samples

2.2.3. TextBlob:

For TextBlob, we have kept the same preprocessing steps consistent with phase #1 (Refer

to section 2.2). However, we have now retained negative stop words which we didn't include in

phase #1.

2.2.4. VADER:

In VADER, we have kept almost the same preprocessing steps as phase #1 (Refer to

Section 1.2.3). However, in phase #2 we made an additional adjustment by removing URLs. This

step was necessary because VADER does not automatically handle URL removal as part of its

built-in preprocessing.

2.2.5. Machine Learning:

 In the context of preparing text data for sentiment analysis using a machine learning model,

it is crucial to process the dataset thoroughly to enhance model performance and accuracy.

Different from the TextBlob & VADER model approach, this ML model requires a series of specific

pre-processing steps to refine the dataset.

There are the pre-processing steps used:

• URL Removal

URLs often contain no sentiment value and can introduce noise into the data. By

eliminating web links, the focus is directed towards the textual content that holds potential

sentiment.

• Special Character and Digit Exclusion

Special characters and digits are typically irrelevant for natural language processing tasks

and can detract from the model's ability to learn from the text content.

• Whitespace Trimming

Trailing whitespaces can create inconsistencies in the data. Removing these ensures a

cleaner, more uniform dataset & helping the model to process text more effectively.

• Lowercasing

Converting all text to lowercase helps maintain consistency in the data. This step ensures

that the model does not differentiate between words based on their case.

• Punctuation Removal

Punctuations can sometimes distort the meaning of sentences or add unnecessary

complexity. Removing them fosters a more straightforward analysis of the text.

• Stop Word Removal with Custom Adjustments

Standard stop words (like "the", "is", and "in") are usually removed as they typically do

not contribute to sentiment. However, this model retains certain negative contractions and

negations (like "don't", "isn't", "no") which are crucial for sentiment analysis.

• Contraction Expansion

Expanding contractions (e.g., transforming "can't" into "cannot") ensures that the model

comprehends the full meaning of words, which is vital for accurate sentiment analysis.

• Tokenization

Breaking down the text into individual words or tokens is essential for analysis. It helps

the model to understand and process each word separately.

• Lemmatization

This step involves converting words to their base or root form. Unlike stemming,

lemmatization takes into consideration the context of words, thus enhancing the quality of the

processed data.

• Rejoining Tokens

After processing, lemmatized tokens are reassembled into coherent text. This step is

crucial for ensuring that the text remains understandable and retains its original meaning, albeit

in a processed form.

• Feature Extraction

We then apply Term Frequency-Inverse Document Frequency (TF-IDF) for feature

extraction, converting text data into a numerical format suitable for machine learning models.

The reason to use TF-IDF is because TF-IDF considers the frequency of words in a document

against their occurrence across the entire corpus. This approach highlights words that are

frequent in a document but not common across all documents, thereby emphasizing the unique

content of each document. It also helps to reduce the dimensionality of the feature space and

due to its effectiveness in capturing document content while filtering out noise, it is widely

accepted.

• Balancing the Dataset

Considering the imbalance in our dataset, we employ oversampling techniques to

increase the representation of minority classes. This approach helps in improving the model’s

performance and generalizability. Before oversample the labels:

o Initial Class Distribution

 Initially, our dataset exhibited a severe imbalance. The distribution of the classes was as

follows:

▪ Positive: 1188 samples

▪ Neutral: 19 samples

▪ Negative: 15 samples

This disproportion heavily skewed towards the ‘Positive’ class which could potentially

lead to a model biased towards predicting this class while underperforming on ‘Neutral’ and

‘Negative’ classes.

o Application of Random Over Sampling

To rectify this imbalance, we employed the RandomOverSampler technique. This method

works by randomly duplicating instances from the minority classes until all classes have an equal

number of instances. After applying RandomOverSampler, the class distribution was balanced:

▪ Positive: 1188 samples

▪ Neutral: 1188 samples

▪ Negative: 1188 samples

This balanced distribution ensures that each class has equal representation in our dataset

& allowing for a more equitable training process for our machine learning models.

Figures 6.1 and 6.2 in the report visually represent the class distributions before and after the

application of RandomOverSampler, respectively.

Figure 6.1 - Sentiments Label Distribution before Up-Sampling

Figure 6.2 - Sentiments Label Distribution Up-Sampling

2.3. Machine Learning Models Declaration

2.3.1. Logistic Regression

The model used is LogisticRegression, which is particularly designed to predict the

probability of a binary outcome. It has been set up with a key parameter

class_weight="balanced", which is used to handle imbalanced datasets by adjusting weights

inversely proportional to class frequencies. The max_iter parameter is set to 500, defining the

maximum number of iterations taken for the solvers to converge.

2.3.2. Support Vector Machine (SVM)

The SVM model is implemented using the SVC class, a popular choice for classification

tasks. Similar to Logistic Regression, it has class_weight="balanced" to address class imbalance.

It has a higher max_iter value of 10,000, allowing more iterations for the model to find the

optimal margin between classes.

2.3.3. Naive Bayes

This model employs the MultinomialNB algorithm, which is effective for classification with

discrete features like word counts for text classification. It uses the default parameters which are

generally a good starting point for baseline modeling.

2.3.4. Gradient Boosting

The Gradient Boosting model utilizes the GradientBoostingClassifier, known for

combining multiple weak learning models to create a strong predictive model. It is configured

with default parameters which often yield a competitive model without extensive parameter

tuning.

2.4. Machine Learning Models Results

We trained four different types of machine learning models to understand people's

feelings from their gift card reviews. These models were Logistic Regression, Support Vector

Machine (SVM), Naive Bayes, and Gradient Boosting. We have used 70% of our data to train and

30% on testing these models.

2.4.1. Logistic Regression:

The model did well in the training, with an accuracy of about 99.86%. When we tested it,

it scored 98.28% in accuracy. This model also showed the best overall performance with a high

testing accuracy of 98.28% and an F1 Score of 98.26%. Its precision and recall are also impressive

at 98.30% and 98.28%, respectively. These balanced scores across different classes suggest that

Logistic Regression performed consistently well and accurately identifying various sentiments in

the reviews.

2.4.2. Support Vector Machine (SVM):

The SVM model was close to Logistic Regression in performance, achieving an accuracy

of 99.97% in training, 97.71% in testing and an F1 Score of 97.13%. While its precision was slightly

lower at 97.04%, the recall was on par at 97.71%. This indicates a slightly better identification of

the Positive class, showing its strength in recognizing more clear-cut sentiments.

2.4.3. Naive Bayes:

Naive Bayes had a lower accuracy of 98.99% in training, 94.66% in testing and an F1 Score

of 95.58%, compared to the first two models. This model showed a higher precision of 96.79%

but a lower recall of 94.66%. It excelled more with Positive reviews, indicating a tendency to

better identify clear positive sentiments but struggled a bit with Neutral reviews, especially in

recognizing them accurately.

2.4.4. Gradient Boosting:

Gradient Boosting had an accuracy of 100% in training (which is great, but we need to

make sure it's not overfitting the data), 97.33% in testing and an F1 Score of 97.16%, which is

lower than Logistic Regression and SVM. The precision and recall were 97.14% and 97.33%,

respectively. Like Naive Bayes, this model was more effective in identifying Positive sentiments,

but its performance was not as balanced across different classes, with a slight struggle in

accurately categorizing Neutral sentiments.

2.4.5. Model Results

This table shows the metrics (accuracy, precision, recall, F1 score, and confusion matrix)

of the 4 models using the testing data.

Model Accuracy Precision Recall F1 Confusion

Matrix

Logistic

Regression

0.9828 0.9830 0.9828 0.9826 [[5 0 1]

[1 4 3]

[2 2 506]]

Support Vector

Machine (SVM)

0.9771 0.9704 0.9771 0.9713 [[1 0 5]

[1 2 5]

[0 1 509]]

Naive Bayes 0.9466 0.9679 0.9466 0.9558 [[3 0 3]

[1 4 3]

[8 13 489]]

Gradient

Boosting

0.9733 0.9714 0.9733 0.9716 [[4 0 2]

[0 2 6]

[4 2 504]]

After analyzing the results for the Machine Learning model, Logistic Regression and SVM

are giving better accuracy than others so, we chose Logistic Regression and Support Vector

Machine (SVM) models for their strong track record with binary classification tasks like ours.

Logistic Regression is advantageous for its ability to handle imbalanced datasets and provide

probabilistic outputs, which is crucial for understanding the confidence behind each sentiment

prediction. SVM is favored for its robustness in high-dimensional spaces and its capability to

handle complex patterns, a common feature of text data. While both models performed well

with the TF-IDF representation of our dataset, we recognize that results might vary with different

data representations or further model tuning. The choice of these models is a strategic step to

leverage their individual strengths, potentially creating a more accurate and reliable sentiment

analysis framework.

2.5. Machine Learning Models vs Lexicon Models

The comparative analysis of the Lexicon Models (TextBlob and Vader) versus the Machine

Learning Models (Logistic Regression & Support Vector Machine) reveals insightful distinctions in

performance metrics for sentiment analysis. The Lexicon Models, particularly TextBlob,

demonstrate lower accuracy (0.685 for TextBlob and 0.885 for Vader) compared to the Machine

Learning Models, which exhibit notably higher accuracy (0.990 for Logistic Regression and 0.985

for SVM). This suggests that while Lexicon Models are useful for quick, rule-based sentiment

analysis but they may lack the nuanced understanding and adaptability of Machine Learning

Models.

Model Type Model Accuracy Precision Recall F1 Confusion

Matrix

Lexicon

Model

TextBlob 0.685 0.9567 0.685 0.7950 [[2 0 0]

[0 0 3]

[5 55 135]]

Lexicon

Model

Vader 0.885 0.9588 0.885 0.9204 [[0 2 0]

[0 0 3]

[2 16 177]]

Machine

Learning

Model

Logistic

Regression

0.990 0.9901 0.990 0.9887 [[1 0 1]

[0 2 1]

[0 0 195]]

Machine

Learning

Model

Support

Vector

Machine

(SVM)

0.985 0.9852 0.985 0.9817 [[1 0 1]

[0 1 2]

[0 0 195]]

2.6. Research Paper- Recommender systems based on user reviews: the state of the art

Upon meticulous analysis of the research document - “Recommender systems based on

user reviews: the state of the art”, we explored various methodologies aimed at enhancing

ratings. Section 4.2: Rating profile – inferring ratings from reviews - of the paper mentions that

“In this section, we survey approaches that aim to infer a user’s overall preference for a product

based on the opinions s/he expresses in the review, which can act as a virtual rating (also called

an inferred rating, opinion rating, or text-based rating) for a CF system.” (Para 1, page 110). In

the subsequent section 4.3.3, it is reiterated that “As mentioned in Sect. 4.2, “virtual ratings are

the overall opinions inferred from reviews.” (Para 1, page 116). The study also highlights “opinion

post-filtering, in which ratings and overall opinions are first used independently to train two

prediction models, and then a linear combination of the two models is realized to obtain the final

rating prediction” (Para 2, page 116). Notably, during the evaluation of three proposed variations

on the Amazon dataset the opinion post-filtering method exhibited superior predictive accuracy,

particularly in terms of the Root Mean Squared Error (RMSE) (Para 3, pg 116)

In alignment with this research, we proceeded with the post-filtering method, leveraging

our two most performant machine learning models—SVM and Logistic Regression—for

sentiment analysis. Here, SVM incorporates the inferred ratings while Logistic Regression

considers the actual rating values.

2.6.1. Pseudo Code:

Train SVM and Logistic Regression models

svm_model = SVM()

svm_model.fit(X_train_resampled, y_train_resampled)

logistic_regression_model = LogisticRegression()

logistic_regression_model.fit(X_train_resampled,

y_train_resampled)

Calculate inferred ratings

inferred_rating_svm = svm_model.predict(X_test_tfidf)

inferred_rating_lr =

logistic_regression_model.predict(X_test_tfidf)

Calculate enhanced ratings using linear combination

enhanced_rating = (svm_weight * inferred_rating_svm) +

(lr_weight * inferred_rating_lr)

Evaluate performance with MSE on testing data

mse_sample_df = mean_squared_error(sample_df['overall'],

enhanced_rating_sample)

2.6.2. Diagram:

This is the diagram that explain the pseudocode and the implementation of the state-of-

the-art model to enhance the rating in our dataset.

The method began by utilizing pre-processed data from the 'text_df' dataset, considering

the overall rating values as X and Y. The dataset was split into 70% training and 30% testing

segments, comprising 1222 and 524 entries, respectively. Text representations in the form of TF-

IDF count frequency vectors were created to facilitate model training. To counter class

imbalance, we employed RandomOverSampler, elevating the minority class values for ratings 4

through 1 to match the count of rating 5 (1112 instances).

Before upsampling, the rating distribution was as follows:

{5: 1112, 4: 77, 3: 19, 1: 8, 2: 6}

Post-upsampling, the balanced distribution stood at:

{5: 1112, 3: 1112, 4: 1112, 1: 1112, 2: 1112}

 Subsequently, we trained SVM and Logistic Regression models using the upsampled

overall ratings, achieving an impressive training accuracy of 0.99 for both. The calculation of

enhanced ratings involved a weighted formula:

enhanced_rating = (svm_weight * inferred_rating_svm) + (gb_weight *

inferred_rating_gb)

Through rigorous experimentation with different weight combinations, we found that a

weight distribution of 0.4 for SVM and 0.6 for Logistic Regression in the linear combination

yielded the best performance. This selection was based on optimizing the mean square error on

the testing data, showcasing the effectiveness of a 0.4-0.6 weight allocation for these models.

Upon evaluation with 500 reviews from the testing data, the resultant mean squared error (MSE)

of 0.2 demonstrated robust predictive performance.

 Extending this analysis to predict enhanced ratings for the 200 reviews segregated in the

'sample_df' dataset, we achieved an impressive MSE of 0.15, showcasing the robustness of our

model. Notably, as a post-processing step, we rounded off the enhanced ratings to the nearest

integer value to maintain ratings within the standardized range of 1 to 5. A comprehensive

comparison between the enhanced ratings and the actual ratings is depicted below:

2.7. Final Conclusion

The comprehensive analysis and practical implementation of advanced recommender

systems demonstrates a significant stride in the domain of sentiment analysis and rating

prediction. It was inspired by the pivotal insights from the paper “Recommender systems based

on user reviews: the state of the art,” notably advances the methodology of inferring and

enhancing user ratings from textual reviews.

By integrating the strengths of both Support Vector Machine (SVM) and Logistic

Regression models, we successfully harnessed the nuanced sentiment expressed in user reviews.

This integration led to the development of a robust system capable of accurately predicting user

preferences and opinions, which are crucial for reliable recommendation systems. The novel

approach of using a weighted linear combination of inferred ratings from these models proved

to be highly effective, as evidenced by the low mean squared error (MSE) scores obtained during

testing.

In conclusion, this underscores the transformative power of machine learning in

understanding and predicting user sentiments. The significant reduction in MSE and the high

accuracy of our enhanced ratings affirm the efficacy of our approach, paving the way for more

sophisticated and user-centric recommender systems in the future.

3. References

❖ Project, U. C. R. (n.d.). Amazon Review Data (2018).

https://nijianmo.github.io/amazon/index.html

❖ Tutorial: Quickstart - TextBlob 0.16.0 documentation (n.d.).

https://textblob.readthedocs.io/en/dev/quickstart.html

❖ Cjhutto. (n.d.). CJHUTTO/Vadersentiment: Vader sentiment analysis. GitHub.

https://github.com/cjhutto/vaderSentiment

❖ Vader sentiment analysis: A complete guide, algo trading and more. Quantitative Finance

& Algo Trading Blog by QuantInsti. https://blog.quantinsti.com/vader-sentiment/

❖ Todi, M. (2019, September 23). Sentiment analysis using the vader library. Medium.

https://medium.com/analytics-vidhya/sentiment-analysis-using-the-vader-library-

a91a888e4afd

❖ Chen, L., Chen, G., & Wang, F. (2015). Recommender systems based on user reviews: the

state of the art. User Modeling and User-Adapted Interaction, 25(2), 99–154.

https://doi.org/10.1007/s11257-015-9155-5

https://nijianmo.github.io/amazon/index.html
https://textblob.readthedocs.io/en/dev/quickstart.html
https://github.com/cjhutto/vaderSentiment
https://blog.quantinsti.com/vader-sentiment/
https://medium.com/analytics-vidhya/sentiment-analysis-using-the-vader-library-a91a888e4afd
https://medium.com/analytics-vidhya/sentiment-analysis-using-the-vader-library-a91a888e4afd

4. Appendix 1: Project plan

The purpose of this project is to create a sentiment analysis model that can classify

customers textual reviews on amazon data as positive, negative, or neutral sentiment. Sentiment

analysis is an important part of NLP that enables machines to understand human emotions

conveyed in text. It aids businesses in gauging customer feedback, helps in automating responses

to user queries, social media monitoring etc.

The goal of this project is to present an in-depth overview of the essential steps involved

in creating a sentiment analysis model utilizing the Lexicon method.

o Data exploration is done in the first section. a vital first step in comprehending the

information provided. It helps us make sense of the data provided and decides what

needs to be done for future tasks.

o The second step is Data preprocessing. This step is necessary so that data is clean,

consistent, and ready for further processing.

o Model training and assessment constitute the last step, whereby two lexicon methods

(Vader, TextBlob, and Sentiwordnet models) out of three should be chosen.

o Phase 1 ends with the selection of the two best models, which will then be compared to

each other based on accuracy and other performance measures.

o In the second phase, we will explore machine learning algorithms for sentiment analysis,

including Logistic Regression, SVM, Naïve Bayes, and Gradient Boosting. We will train two

chosen models and document their training results.

o The models will be rigorously tested using a set portion of the data. We will record metrics

such as accuracy, precision, recall, and F1 score. A unique experiment will be designed to

compare the Lexicon-based models with the machine learning models to ensure a fair and

comprehensive comparison.

o The project will culminate in a presentation, a detailed project report, and the submission

of all documented code, including references to any external datasets used. Our final

deliverables aim to provide a holistic view of the process and outcomes of developing a

state-of-the-art sentiment analysis model.

