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1. Phase 1 

1.1. Data Exploration  

1.1.1. Dataset Info 

The dataset under consideration comprises customer reviews for gift cards. It 

encapsulates a variety of information pertaining to reviews, reviewers, and products. It 

encompasses 2,972 reviews for 148 unique gift card products and provides a comprehensive 

insight into customer sentiments and opinions. Each review was contributed by one of the 458 

distinct reviewers. On average, products have received a high rating of approximately 4.89 with 

2,838 reviews being verified and each review fetching around 5.16 votes. The dataset is organized 

across 12 different columns, each serving a specific purpose. The “overall” column reflects the 

numerical rating given to a product, while “verified” indicates whether a review is authenticated. 

The dataset also records textual details with columns like “reviewerID” capturing the unique 

identifier of a reviewer, and “asin” pinpointing the specific gift card product. Other descriptors 

such as “reviewerName”, “reviewText”, “summary”, “image”, “style”, and “reviewTime” further 

enrich the dataset by offering nuanced insights into the reviewer’s identity, sentiments, and the 

timing of the review. Lastly, the “unixReviewTime” column provides a timestamp for each review, 

and the “vote” column quantifies the popularity or impact of a review through the number of 

votes it has garnered. 



   

 

   

 

1.1.2. Descriptive Statistics 

              The descriptive statistics shed light on the dataset's attributes. With 2,972 reviews 

captured, the average rating sits at a commendable 4.88 on a 5-point scale. Reviews span across 

various timestamps, with "unixReviewTime" falling between 1.33e+09 and 1.53e+09. Notably, 

out of all reviews, 208 have been actively engaged with, averaging 5.16 votes each. 

1.1.3. Correlation Analysis 

 

              The heatmap shows the correlation between three columns (overall, vote, 

unixReviewTime). Specifically, there’s a mild negative association between ‘overall’ ratings and 

‘vote’, denoted by a -0.16 correlation. Furthermore, the connection between ‘overall’ ratings and 

‘unixReviewTime’ is very slight almost negligible at -0.0084. Lastly, ‘vote’ and ‘unixReviewTime’ 



   

 

   

 

also exhibit a negative relationship with a correlation of -0.15, hinting that as the review time 

progresses, there might be a slight decrease in the votes. 

1.1.4. Distribution Of Ratings and Reviews 

 

              The graph shows how people rated from 1 to 5. Most people, about 93% (2,752 out of 

2,972), gave a 5-star rating, showing they were very happy. Only about 0.74% (22 out of 2,972) 

gave a 1-star rating, 0.37% (11 out of 2,972) gave a 2-star, and 1.11% (33 out of 2,972) gave a 3-

star rating. A slightly larger group, about 5.18% (154 out of 2,972), gave a 4-star rating. So, the 

majority had a great experience. The average rating or score in the "overall" column is 

approximately 4.89. 



   

 

   

 

 

              The graph displays the distribution of verified versus non-verified reviews. About 95.5% 

(2,838 out of 2,972) of the reviews are verified, showing a high level of authenticity or validation 

in the review process. The remaining 4.5% (134 out of 2,972) of the reviews are not verified. 

1.1.5. Conclusion 

              The data exploration reveals a predominantly positive sentiment from the reviewers. The 

combination of a high average rating with the substantial proportion of verified reviews suggests 

that the feedback is both positive and credible. The product, service, or content under review 

seems to be well-received by its users. 

1.2. Dataset Pre-processing  

              The data pre-processing is a crucial step in NLP projects to clean, transform, and organize 

the data with the goal to prepare for further analysis. The dataset is related to reviews from 



   

 

   

 

Amazon Gift Cards which were written by users with their personal opinions. However, the 

dataset could contain noise in the form of special characters, blank spaces, digits, emoticons, 

emojis, URLs, and other irrelevant elements, which can impact the performance of NLP, Machine 

Learning, or AI models. Therefore, it is necessary to conduct comprehensive dataset 

preprocessing to prepare the data for modeling. 

1.2.1. Basic Dataset Pre-processing 

Firstly, it is necessary to make a basic Dataset Pre-processing to clean, transform, and 

organize the data. This step is crucial for modeling because it is necessary to decide what 

columns/features should be dropped, modified, merged, or added.  

For this project, there are some steps to perform the dataset before modeling: 

1. Removed all non-verified records 

For this step, it was necessary to check the original dataset which contains a 

column called “verified” which is related to the authenticity of the user review. It 

could help to determine if the user is a real person or a robot. In the data exploration, 

the distribution of Verified and Non-Verified Reviews shows 134 reviews that are not 

verified. 

2. Dropped unwanted columns 

To perform the sentiment analysis processing, it is necessary to drop 

unnecessary columns that do not contribute anything. After to analyze the dataset, 



   

 

   

 

there are some columns that should be dropped such as 'verified', 'reviewerID', 'asin', 

'reviewerName', 'reviewTime', 'style', 'unixReviewTime', 'vote', and 'image'. 

3. Dropped duplicates 

To maintain data integrity, it is necessary to eliminate duplicate records. There 

are 892 duplicated records that should be eliminated from the dataset. 

4. Labeled the data based on the value of “rating of the product” 

After to check the original dataset, it contains a column called “overall” which 

is associated to the rating of the product. It is a form to categorize each review using 

the rating. Consequently, it was necessary to assign a sentiment analysis, using the 

following logic: ratings 4 and 5 as “Positive”, rating 3 as “Neutral”, and ratings 1, and 

2 as “Negative” 

5. Merge both columns “reviewText” and “summary” into a new column called “text” 

After to check the original dataset, it contains two columns called 

“reviewText” and “summary” that have text related to the user review. The 

consolidation of both columns in a new column called “text” help to simplified 

subsequent text analysis processes, fostering a more streamlined analytical workflow. 



   

 

   

 

1.2.2. Dataset Pre-processing for TextBlob model 

For TextBlob model, it was necessary to make some dataset pre-processing to perform 

the dataset. 

For this project, there are some steps to perform the dataset before modeling: 

1. Exclusion of Special Characters and Digits 

This step is necessary to streamline the data, ensuring that the model focused only 

in the linguistic that could carry sentiment. Numbers or special characters could be 

irrelevant and cause some noise for modeling. 

2. Trimming trailing whitespaces 

To avoid some noise into the data, it is necessary to trim trailing whitespaces. This 

step is necessary to maintain consistency. 

3. Punctuation removal 

To avoid some noise into the data, it is necessary to remove punctuation. The 

punctuation could sometimes distort the meaning of the sentence, and this step fosters 

a cleaner analysis. For that reason, this step is crucial to improve the accuracy of the 

sentiment analysis. 

4. URL elimination 



   

 

   

 

Web links do not contribute to sentiment analysis, for that reason it is necessary 

to remove from the text with the goal to improve our data for modeling. 

5. Removal of Stop Words 

In sentiment analysis, some words such as “a”, “the”, and “is” have limited 

semantic meaning and could be disregarder. For that reason, is necessary to eliminate 

common and non-informative words know such as “stop words”. 

6. Expanding contractions 

To perform modeling some expansions of the contractions should be used to 

enable the understanding of the complete word. With expanding contractions, it could 

ensure that words like “can’t” were transformed into “cannot”. 

7. Tokenization 

To make it more amenable for analysis, it was necessary to use tokenization which 

is crucial to breaks down text into its basic elements. 

8. Rejoining Tokens 

Post tokenization, the individual token should be reassembled into coherent text.  

After to make data pre-processing, the text is ready to sentiment analysis. Lemmatization 

and lowercase are not necessary to apply because TextBlob was embedded those steps. 



   

 

   

 

1.2.3. Dataset Pre-processing for VADER model 

              For VADER model, it is not necessary to do data pre-processing because it is specifically 

designed for sentiment analysis for social media posts. It is well-suited for processing short and 

informal textual data. It can effectively analyze the sentiment intensity and polarity of the text. 

VADER provides a proper handling of sentences with:  

• Typical negations 

• Use of contractions as negations 

• Use of punctuation as signal of increment of the sentiment intensity 

• Use of word-shape (ALL CAPS) as signal of emphasis 

• Use of degree modifiers as alteration of the sentiment intensity 

• Use of the slang words 

• Use of emoticons and emojis 

• Use of the initialisms and acronyms. 

              For that reason, the pre-processing was not required. 

1.3. Models 

1.3.1. TextBlob 

              TextBlob is a Python library for basic natural language processing (NLP) tasks. It offers a 

simple API for common tasks like tokenization, part-of-speech tagging, noun phrase extraction, 



   

 

   

 

and sentiment analysis. TextBlob Built on the NLTK and another package called Pattern, TextBlob 

provides an easy-to-use interface in NLP. 

1.3.1.1. Assumptions/Heuristics/algorithms used 

              The TextBlob by default uses the Pattern library for its sentiment analysis. Pattern’s 

sentiment analysis is built on large dataset annotated with polarity and subjectivity. Sentiment 

of a text is calculated based on the words it contains and their respective subjectivity and polarity. 

Alternate to pattern we can use Naive Bayes classifier trained using NLTK on a movie 

review corpus. This method uses the probabilities of observing specific words given their 

sentiment labels. 

We assume that polarity of text in range of –0.2 to +0.2 will have sentiment neutral 

whereas polarity of text greater than +0.2 will have positive and less than –0.2 will have negative 

sentiment.  

1.3.1.2. How it works 

              TextBlob is a Python library for processing textual data, and it provides a simple API for 

diving into common natural language processing (NLP) tasks.  

 TextBlob first Tokenize and preprocesses data (removing stop words, lowercasing etc.), 

and then TextBlob can tag each token with its corresponding Part-Of-Speech like noun, verb, etc. 

We can also call this as a feature extraction in which we convert the tokenized words into features 

that model can understand. 



   

 

   

 

The sentiment property of the api/library returns polarity and subjectivity. 

Polarity ranges from –1.0 to +1.0 while subjectivity ranges from 0 to +1.0.  Polarity 

measures the emotion. Where +1.0 refers to positive and –1.0 refers to negative. While 

subjectivity refers to opinion or views which needs to analyze in given context where 0 is very 

objective and +1.0 is very subjective. A subjective instance may or may not carry any emotion. 

1.3.1.3. External Datasets 

TextBlob relies on external datasets and resources for various functionalities like: 

• Sentiment Analysis-> TextBlob uses the ‘Pattern’ library for sentiment analysis which 

comes with a built-in sentiment lexicon. This lexicon is used to determine polarity 

(positivity/negativity) and subjectivity of a text. It is not exactly a dataset but rather a 

collection of words and their associated sentiment scores. 

• POS Tagging and Noun Phrase Extraction-> For these functionalities, TextBlob leverages 

corpora and trained models from the Natural Language Toolkit (NLTK). Specifically, it 

typically uses the Penn Treebank dataset for POS tagging. 

• Tokenization-> TextBlob uses NLTK’s tokenization methods, while not directly relying on 

a specific dataset but have been informed and refined by numerous corpora. 

• Translation and Language Detection-> TextBlob offloads these tasks to the Google 

Translate API. This is not directly about an external dataset, but it is worth noting since 

the translation capability relies on an external service. 



   

 

   

 

1.3.2. Valence Aware Dictionary and Sentiment Reasoner (VADER) 

              VADER (Valence Aware Dictionary and Sentiment Reasoner) is a lexicon-based sentiment 

analysis tool that uses a pre-built dictionary of words and their associated sentiment scores to 

determine the sentiment of a given piece of text. Its lexicon is specifically tuned to handle 

informal language and features such as slang, emoticons, and capitalization commonly used in 

social media text, news articles, blogs etc. 

1.3.2.1. Assumptions/Heuristics/algorithms used 

              We have Assume that valance score of a text ranging from –0.2 to +0.2 will be count as a 

neutral sentiment. Valance score Greater than +0.2 and less than –0.2, we will count as a positive 

and negative sentiment respectively. 

1.3.2.2. How it works 

               VADER relies on a predefined dictionary (or lexicon) that maps words and other 

numerous lexical features common to sentiment expression in microblogs. 

These features include: 

• A full list of Western-style emoticons (ex - :D and :P ) 

• Sentiment-related acronyms (ex- LOL and ROFL) 

• Commonly used slang with sentiment value (ex- Nah and meh) 



   

 

   

 

The valence scores in VADER's lexicon range from -4 (most negative) to +4 (most positive). 

The sentiment score of text is calculated as a sum of intensity score of words in the text. Words 

that are neutral or have no clear sentiment typically have a score close to 0. 

To calculate the composite sentiment score for an entire piece of text, VADER doesn't just 

sum up the valence scores of individual words. Instead, it incorporates various heuristics and 

rules, including: 

• Adjusting scores for booster words (e.g., "very" or "extremely") that can amplify the 

sentiment of a neighboring word. 

• Handling negations that can reverse the sentiment (e.g., "not good" is negative despite 

the word "good" being positive). 

• Accounting for the effects of punctuation, capitalization, and other linguistic cues. 

After processing the text and applying these rules, VADER produces a compound 

sentiment score that ranges from -1 (most negative) to +1 (most positive). This score offers a 

holistic view of the text's overall sentiment. In addition to the compound score, VADER also 

provides individual scores for the positive, neutral, and negative sentiments present in the text. 

1.3.2.3. External Datasets 

VADER has its own dataset called vader_lexicon.txt which is validated by multiple 

independent human judges. VADER incorporates a "gold-standard" sentiment lexicon that is 

especially attuned to microblog-like contexts. 



   

 

   

 

Other than it, VADER also uses external datasets like  

• nytEditorialSnippets_GroundTruth.txt 

• nytEditorialSnippets_anonDataRatings.txt 

• movieReviewSnippets_GroundTruth.txt 

• movieReviewSnippets_anonDataRatings.txt 

• amazonReviewSnippets_GroundTruth.txt 

• amazonReviewSnippets_anonDataRatings.txt 

• tweets_GroundTruth.txt,tweets_anonDataRatings.txt 

1.4. Testing results summary 

              The summary analysis based on the testing outcomes of the two approaches—Vader and 

Textblob that we used to develop our model is presented below. 

1.4.1. TextBlob 

              The TextBlob  Model  had an accuracy of about 73%, with a precision of 98% for positive 

sentiment, 2% for neutral sentiment and 0% for negative sentiment. With a weighted average of 

95%. 

1.4.2. Vader 

              The VADER model had an accuracy of about 88%, with precision of 97% for positive 

sentiment, 1% for neutral sentiment and 12% for negative sentiment. With a weighted average 

of 95% 



   

 

   

 

1.4.3. Model Comparison 

Overall, the Vader model performed the best out of two models, with the highest 

accuracy and f1-score for positive sentiment. The Textblob model does not perform as well as 

the Vader model, but it still has decent accuracy. One thing we should note is that both models 

have identical weighted avg score for precision of about 95%. 

 

In the Original Label Rating, a vast majority of reviews, 969 to be precise and categorized 

as positive with a minimal 18 as neutral and 13 as negative. The TextBlob Lexicon Model has 

identified 743 reviews as positive, 242 as neutral and 15 as negative. Comparatively, the VADER 

Lexicon Model labels 901 reviews as positive, 83 as neutral and 16 as negative. Both the TextBlob 

and VADER models depict a higher number of neutral reviews compared to the Original Label. 



   

 

   

 

 

1.5. Final Conclusion 

The data exploration reveals a predominantly positive sentiment from the reviewers. The 

combination of a high average rating with the substantial proportion of verified reviews suggests 

that the feedback is both positive and credible. The product, service, or content under review 

seems to be well-received by its users. 

In data preprocessing we include steps regarding handling missing data, removing 

duplicates, removing stop-words, combining review text and summary etc. for textblob, whereas 

we only use clean text which is combination of review text and summary for VADER as it is. We 

dropped columns which are not useful for sentiment analysis like Style, vote, image, and 

reviewerName, etc. 



   

 

   

 

Then we perform sentiment analysis using textblob and VADER by categorizing reviews 

into positive, negative, and neutral categories based on their ratings. 

When comparing the sentiment analysis capabilities of VADER and TextBlob, VADER 

clearly emerges as the superior model. It consistently outperforms TextBlob across key metrics, 

particularly in accuracy and in identifying positive sentiments. While both models have their 

merits, for tasks demanding higher precision and recall, VADER appears to be the more reliable 

choice. 

2. Phase 2 

2.1. Machine Learning Approach 

In phase #2 of our project, we focused on implementing and evaluating machine learning 

models for sentiment analysis on gift card reviews. Firstly, we prepared the remaining dataset by 

cleaning the text, labeling based on ratings. Then, we split it into 200 rows for validation set i.e. 

comparing with lexicon approach, and the remaining will be used for training and testing sets. 

Then, we split it into training and testing sets, using 70% for training and 30% for testing with 

stratified sampling. Our approach involved preprocessing the text data which included removing 

HTML tags, converting text to lowercase, removing special characters and stopwords. We then 

trained and evaluated several machine learning models, such as Logistic Regression, SVM, Naive 

Bayes and Gradient Boosting, using metrics like accuracy, precision, recall and F1 score to select 

the best model for predicting sentiment in the test set. 



   

 

   

 

2.2. Data Pre-processing: 

2.2.1. Basic Pre-processing: 

We have implemented the same data pre-processing steps as in phase #1 (Refer to section 

2.1) 

2.2.2. Data Distribution: 

2.2.2.1. Lexicon Approach Sampling:  

After Basic pre-processing, out of 1,946, we selected a subset of 200 reviews for 

comparison with Lexicon-based Sentiment Analysis.  

2.2.2.2. ML Model Preparation  

Reserved remaining 1,746 reviews for Machine Learning models which has been further 

split into training set 70% of 1,746 reviews, focusing on model training and optimization and 

testing set of remaining 30% of the data, used to evaluate model performance.  

There are the Final Dataset Shapes: 

• Training Data (ML) = Reviews (X): 1,222 samples & Overall Rating (y): 1,222 samples  

• Testing Data (ML) = Reviews (X): 524 samples & Overall Rating (y): 524 samples 

2.2.3. TextBlob: 

For TextBlob, we have kept the same preprocessing steps consistent with phase #1 (Refer 

to section 2.2). However, we have now retained negative stop words which we didn't include in 

phase #1. 



   

 

   

 

2.2.4. VADER: 

In VADER, we have kept almost the same preprocessing steps as phase #1 (Refer to 

Section 1.2.3). However, in phase #2 we made an additional adjustment by removing URLs. This 

step was necessary because VADER does not automatically handle URL removal as part of its 

built-in preprocessing. 

2.2.5. Machine Learning: 

 In the context of preparing text data for sentiment analysis using a machine learning model, 

it is crucial to process the dataset thoroughly to enhance model performance and accuracy. 

Different from the TextBlob & VADER model approach, this ML model requires a series of specific 

pre-processing steps to refine the dataset. 

There are the pre-processing steps used: 

• URL Removal 

URLs often contain no sentiment value and can introduce noise into the data. By 

eliminating web links, the focus is directed towards the textual content that holds potential 

sentiment. 

• Special Character and Digit Exclusion 

Special characters and digits are typically irrelevant for natural language processing tasks 

and can detract from the model's ability to learn from the text content. 

• Whitespace Trimming 



   

 

   

 

Trailing whitespaces can create inconsistencies in the data. Removing these ensures a 

cleaner, more uniform dataset & helping the model to process text more effectively. 

• Lowercasing 

Converting all text to lowercase helps maintain consistency in the data. This step ensures 

that the model does not differentiate between words based on their case. 

• Punctuation Removal 

Punctuations can sometimes distort the meaning of sentences or add unnecessary 

complexity. Removing them fosters a more straightforward analysis of the text. 

• Stop Word Removal with Custom Adjustments 

Standard stop words (like "the", "is", and "in") are usually removed as they typically do 

not contribute to sentiment. However, this model retains certain negative contractions and 

negations (like "don't", "isn't", "no") which are crucial for sentiment analysis. 

• Contraction Expansion 

Expanding contractions (e.g., transforming "can't" into "cannot") ensures that the model 

comprehends the full meaning of words, which is vital for accurate sentiment analysis. 

• Tokenization 

Breaking down the text into individual words or tokens is essential for analysis. It helps 

the model to understand and process each word separately. 

• Lemmatization 



   

 

   

 

This step involves converting words to their base or root form. Unlike stemming, 

lemmatization takes into consideration the context of words, thus enhancing the quality of the 

processed data. 

• Rejoining Tokens 

After processing, lemmatized tokens are reassembled into coherent text. This step is 

crucial for ensuring that the text remains understandable and retains its original meaning, albeit 

in a processed form. 

• Feature Extraction 

We then apply Term Frequency-Inverse Document Frequency (TF-IDF) for feature 

extraction, converting text data into a numerical format suitable for machine learning models. 

The reason to use TF-IDF is because TF-IDF considers the frequency of words in a document 

against their occurrence across the entire corpus. This approach highlights words that are 

frequent in a document but not common across all documents, thereby emphasizing the unique 

content of each document. It also helps to reduce the dimensionality of the feature space and 

due to its effectiveness in capturing document content while filtering out noise, it is widely 

accepted. 

• Balancing the Dataset 

Considering the imbalance in our dataset, we employ oversampling techniques to 

increase the representation of minority classes. This approach helps in improving the model’s 

performance and generalizability. Before oversample the labels: 



   

 

   

 

o Initial Class Distribution 

  Initially, our dataset exhibited a severe imbalance. The distribution of the classes was as 

follows: 

▪ Positive: 1188 samples 

▪ Neutral: 19 samples 

▪ Negative: 15 samples 

This disproportion heavily skewed towards the ‘Positive’ class which could potentially 

lead to a model biased towards predicting this class while underperforming on ‘Neutral’ and 

‘Negative’ classes. 

o Application of Random Over Sampling 

To rectify this imbalance, we employed the RandomOverSampler technique. This method 

works by randomly duplicating instances from the minority classes until all classes have an equal 

number of instances. After applying RandomOverSampler, the class distribution was balanced: 

▪ Positive: 1188 samples 

▪ Neutral: 1188 samples 

▪ Negative: 1188 samples 

This balanced distribution ensures that each class has equal representation in our dataset 

& allowing for a more equitable training process for our machine learning models. 

Figures 6.1 and 6.2 in the report visually represent the class distributions before and after the 

application of RandomOverSampler, respectively. 



   

 

   

 

 

  

Figure 6.1 - Sentiments Label Distribution before Up-Sampling 

 

Figure 6.2 - Sentiments Label Distribution Up-Sampling 

 



   

 

   

 

2.3. Machine Learning Models Declaration 

2.3.1. Logistic Regression 

The model used is LogisticRegression, which is particularly designed to predict the 

probability of a binary outcome. It has been set up with a key parameter 

class_weight="balanced", which is used to handle imbalanced datasets by adjusting weights 

inversely proportional to class frequencies. The max_iter parameter is set to 500, defining the 

maximum number of iterations taken for the solvers to converge. 

2.3.2. Support Vector Machine (SVM) 

The SVM model is implemented using the SVC class, a popular choice for classification 

tasks. Similar to Logistic Regression, it has class_weight="balanced" to address class imbalance. 

It has a higher max_iter value of 10,000, allowing more iterations for the model to find the 

optimal margin between classes. 

2.3.3. Naive Bayes 

This model employs the MultinomialNB algorithm, which is effective for classification with 

discrete features like word counts for text classification. It uses the default parameters which are 

generally a good starting point for baseline modeling. 

2.3.4. Gradient Boosting 

The Gradient Boosting model utilizes the GradientBoostingClassifier, known for 

combining multiple weak learning models to create a strong predictive model. It is configured 

with default parameters which often yield a competitive model without extensive parameter 

tuning. 



   

 

   

 

2.4. Machine Learning Models Results 

We trained four different types of machine learning models to understand people's 

feelings from their gift card reviews. These models were Logistic Regression, Support Vector 

Machine (SVM), Naive Bayes, and Gradient Boosting. We have used 70% of our data to train and 

30% on testing these models. 

2.4.1. Logistic Regression: 

The model did well in the training, with an accuracy of about 99.86%. When we tested it, 

it scored 98.28% in accuracy. This model also showed the best overall performance with a high 

testing accuracy of 98.28% and an F1 Score of 98.26%. Its precision and recall are also impressive 

at 98.30% and 98.28%, respectively. These balanced scores across different classes suggest that 

Logistic Regression performed consistently well and accurately identifying various sentiments in 

the reviews. 

2.4.2. Support Vector Machine (SVM): 

The SVM model was close to Logistic Regression in performance, achieving an accuracy 

of 99.97% in training, 97.71% in testing and an F1 Score of 97.13%. While its precision was slightly 

lower at 97.04%, the recall was on par at 97.71%. This indicates a slightly better identification of 

the Positive class, showing its strength in recognizing more clear-cut sentiments. 



   

 

   

 

2.4.3. Naive Bayes: 

Naive Bayes had a lower accuracy of 98.99% in training, 94.66% in testing and an F1 Score 

of 95.58%, compared to the first two models. This model showed a higher precision of 96.79% 

but a lower recall of 94.66%. It excelled more with Positive reviews, indicating a tendency to 

better identify clear positive sentiments but struggled a bit with Neutral reviews, especially in 

recognizing them accurately. 

2.4.4. Gradient Boosting: 

Gradient Boosting had an accuracy of 100% in training (which is great, but we need to 

make sure it's not overfitting the data), 97.33% in testing and an F1 Score of 97.16%, which is 

lower than Logistic Regression and SVM. The precision and recall were 97.14% and 97.33%, 

respectively. Like Naive Bayes, this model was more effective in identifying Positive sentiments, 

but its performance was not as balanced across different classes, with a slight struggle in 

accurately categorizing Neutral sentiments. 

2.4.5. Model Results 

This table shows the metrics (accuracy, precision, recall, F1 score, and confusion matrix) 

of the 4 models using the testing data. 

 

 



   

 

   

 

Model Accuracy Precision Recall F1 Confusion 

Matrix 

Logistic 

Regression 

0.9828 0.9830 0.9828 0.9826 [[5 0 1]        

[1 4 3]         

[2 2 506]] 

Support Vector 

Machine (SVM) 

0.9771 0.9704 0.9771 0.9713 [[1 0 5]         

[1 2 5]         

[0 1 509]] 

Naive Bayes 0.9466 0.9679 0.9466 0.9558 [[3 0 3]        

[1 4 3]         

[8 13 489]] 

Gradient 

Boosting 

0.9733 0.9714 0.9733 0.9716 [[4 0 2]           

[0 2 6]             

[4 2 504]] 

 

After analyzing the results for the Machine Learning model, Logistic Regression and SVM 

are giving better accuracy than others so, we chose Logistic Regression and Support Vector 

Machine (SVM) models for their strong track record with binary classification tasks like ours. 

Logistic Regression is advantageous for its ability to handle imbalanced datasets and provide 

probabilistic outputs, which is crucial for understanding the confidence behind each sentiment 

prediction. SVM is favored for its robustness in high-dimensional spaces and its capability to 

handle complex patterns, a common feature of text data. While both models performed well 

with the TF-IDF representation of our dataset, we recognize that results might vary with different 

data representations or further model tuning. The choice of these models is a strategic step to 



   

 

   

 

leverage their individual strengths, potentially creating a more accurate and reliable sentiment 

analysis framework. 

2.5. Machine Learning Models vs Lexicon Models 

The comparative analysis of the Lexicon Models (TextBlob and Vader) versus the Machine 

Learning Models (Logistic Regression & Support Vector Machine) reveals insightful distinctions in 

performance metrics for sentiment analysis. The Lexicon Models, particularly TextBlob, 

demonstrate lower accuracy (0.685 for TextBlob and 0.885 for Vader) compared to the Machine 

Learning Models, which exhibit notably higher accuracy (0.990 for Logistic Regression and 0.985 

for SVM). This suggests that while Lexicon Models are useful for quick, rule-based sentiment 

analysis but they may lack the nuanced understanding and adaptability of Machine Learning 

Models. 

Model Type Model Accuracy Precision Recall F1 Confusion 

Matrix 

Lexicon 

Model 

TextBlob 0.685 0.9567 0.685 0.7950 [[2 0 0]          

[0 0 3]          

[5 55 135]] 

Lexicon 

Model 

Vader 0.885 0.9588 0.885 0.9204 [[0 2 0]          

[0 0 3]          

[2 16 177]] 

Machine 

Learning 

Model 

Logistic 

Regression 

0.990 0.9901 0.990 0.9887 [[1 0 1]          

[0 2 1]           

[0 0 195]] 

Machine 

Learning 

Model 

Support 

Vector 

Machine 

(SVM) 

0.985 0.9852 0.985 0.9817 [[1 0 1]          

[0 1 2]           

[0 0 195]] 

 



   

 

   

 

 

2.6. Research Paper- Recommender systems based on user reviews: the state of the art  

Upon meticulous analysis of the research document - “Recommender systems based on 

user reviews: the state of the art”, we explored various methodologies aimed at enhancing 

ratings. Section 4.2:  Rating profile – inferring ratings from reviews - of the paper mentions that 

“In this section, we survey approaches that aim to infer a user’s overall preference for a product 

based on the opinions s/he expresses in the review, which can act as a virtual rating (also called 

an inferred rating, opinion rating, or text-based rating) for a CF system.” (Para 1, page 110). In 

the subsequent section 4.3.3, it is reiterated that “As mentioned in Sect. 4.2, “virtual ratings are 

the overall opinions inferred from reviews.” (Para 1, page 116). The study also highlights “opinion 

post-filtering, in which ratings and overall opinions are first used independently to train two 

prediction models, and then a linear combination of the two models is realized to obtain the final 

rating prediction” (Para 2, page 116). Notably, during the evaluation of three proposed variations 

on the Amazon dataset the opinion post-filtering method exhibited superior predictive accuracy, 

particularly in terms of the Root Mean Squared Error (RMSE) (Para 3, pg 116) 

In alignment with this research, we proceeded with the post-filtering method, leveraging 

our two most performant machine learning models—SVM and Logistic Regression—for 

sentiment analysis. Here, SVM incorporates the inferred ratings while Logistic Regression 

considers the actual rating values.  

2.6.1. Pseudo Code:  

# Train SVM and Logistic Regression models  

svm_model = SVM() 



   

 

   

 

svm_model.fit(X_train_resampled, y_train_resampled)  

logistic_regression_model = LogisticRegression()  

logistic_regression_model.fit(X_train_resampled, 

y_train_resampled)  

# Calculate inferred ratings 

inferred_rating_svm = svm_model.predict(X_test_tfidf) 

inferred_rating_lr = 

logistic_regression_model.predict(X_test_tfidf) 

# Calculate enhanced ratings using linear combination 

enhanced_rating = (svm_weight * inferred_rating_svm) + 

(lr_weight * inferred_rating_lr) 

# Evaluate performance with MSE on testing data 

mse_sample_df = mean_squared_error(sample_df['overall'], 

enhanced_rating_sample) 

2.6.2. Diagram: 

This is the diagram that explain the pseudocode and the implementation of the state-of-

the-art model to enhance the rating in our dataset. 



   

 

   

 

 

The method began by utilizing pre-processed data from the 'text_df' dataset, considering 

the overall rating values as X and Y. The dataset was split into 70% training and 30% testing 

segments, comprising 1222 and 524 entries, respectively. Text representations in the form of TF-

IDF count frequency vectors were created to facilitate model training. To counter class 

imbalance, we employed RandomOverSampler, elevating the minority class values for ratings 4 

through 1 to match the count of rating 5 (1112 instances). 

Before upsampling, the rating distribution was as follows:  

{5: 1112, 4: 77, 3: 19, 1: 8, 2: 6}  

Post-upsampling, the balanced distribution stood at:  

{5: 1112, 3: 1112, 4: 1112, 1: 1112,  2: 1112} 

  Subsequently, we trained SVM and Logistic Regression models using the upsampled 

overall ratings, achieving an impressive training accuracy of 0.99 for both. The calculation of 

enhanced ratings involved a weighted formula: 



   

 

   

 

enhanced_rating = (svm_weight * inferred_rating_svm) + (gb_weight * 

inferred_rating_gb) 

Through rigorous experimentation with different weight combinations, we found that a 

weight distribution of 0.4 for SVM and 0.6 for Logistic Regression in the linear combination 

yielded the best performance. This selection was based on optimizing the mean square error on 

the testing data, showcasing the effectiveness of a 0.4-0.6 weight allocation for these models. 

Upon evaluation with 500 reviews from the testing data, the resultant mean squared error (MSE) 

of 0.2 demonstrated robust predictive performance. 

  Extending this analysis to predict enhanced ratings for the 200 reviews segregated in the 

'sample_df' dataset, we achieved an impressive MSE of 0.15, showcasing the robustness of our 

model. Notably, as a post-processing step, we rounded off the enhanced ratings to the nearest 

integer value to maintain ratings within the standardized range of 1 to 5. A comprehensive 

comparison between the enhanced ratings and the actual ratings is depicted below: 

 



   

 

   

 

2.7. Final Conclusion 

The comprehensive analysis and practical implementation of advanced recommender 

systems demonstrates a significant stride in the domain of sentiment analysis and rating 

prediction. It was inspired by the pivotal insights from the paper “Recommender systems based 

on user reviews: the state of the art,” notably advances the methodology of inferring and 

enhancing user ratings from textual reviews. 

By integrating the strengths of both Support Vector Machine (SVM) and Logistic 

Regression models, we successfully harnessed the nuanced sentiment expressed in user reviews. 

This integration led to the development of a robust system capable of accurately predicting user 

preferences and opinions, which are crucial for reliable recommendation systems. The novel 

approach of using a weighted linear combination of inferred ratings from these models proved 

to be highly effective, as evidenced by the low mean squared error (MSE) scores obtained during 

testing. 

In conclusion, this underscores the transformative power of machine learning in 

understanding and predicting user sentiments. The significant reduction in MSE and the high 

accuracy of our enhanced ratings affirm the efficacy of our approach, paving the way for more 

sophisticated and user-centric recommender systems in the future. 
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4. Appendix 1: Project plan 

The purpose of this project is to create a sentiment analysis model that can classify 

customers textual reviews on amazon data as positive, negative, or neutral sentiment. Sentiment 

analysis is an important part of NLP that enables machines to understand human emotions 

conveyed in text. It aids businesses in gauging customer feedback, helps in automating responses 

to user queries, social media monitoring etc. 

The goal of this project is to present an in-depth overview of the essential steps involved 

in creating a sentiment analysis model utilizing the Lexicon method.  

o Data exploration is done in the first section. a vital first step in comprehending the 

information provided. It helps us make sense of the data provided and decides what 

needs to be done for future tasks. 

o The second step is Data preprocessing. This step is necessary so that data is clean, 

consistent, and ready for further processing. 

o Model training and assessment constitute the last step, whereby two lexicon methods 

(Vader, TextBlob, and Sentiwordnet models) out of three should be chosen. 

o Phase 1 ends with the selection of the two best models, which will then be compared to 

each other based on accuracy and other performance measures. 

o In the second phase, we will explore machine learning algorithms for sentiment analysis, 

including Logistic Regression, SVM, Naïve Bayes, and Gradient Boosting. We will train two 

chosen models and document their training results. 



   

 

   

 

o The models will be rigorously tested using a set portion of the data. We will record metrics 

such as accuracy, precision, recall, and F1 score. A unique experiment will be designed to 

compare the Lexicon-based models with the machine learning models to ensure a fair and 

comprehensive comparison. 

o The project will culminate in a presentation, a detailed project report, and the submission 

of all documented code, including references to any external datasets used. Our final 

deliverables aim to provide a holistic view of the process and outcomes of developing a 

state-of-the-art sentiment analysis model. 

 


