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Abstract 

 
 
In today’s dynamic global stock markets, investors continually seek reliable 

insights into specific brands with Costco being a prime example. The challenge 

lies not just in predicting Costco’s stock trajectory, but also in understanding the 

countless factors that influence its market performance. Addressing this challenge 

is of paramount importance because with more precise predictions, investors can 

make informed decisions, potentially maximizing their returns on investments in 

brands like Costco. To confront this issue, our team proposes a solution: a 

specialized Stock Price Prediction application tailored for Costco. Using advanced 

machine learning techniques and leveraging a dataset that chronicles Costco's 

stock prices daily since January 2000. Our solution aims to provide unparalleled 

insights. By amalgamating segmentation, classification, and regression models. 

We intend to categorize Costco’s stock based on historical data and other salient 

market factors. Furthermore, our application will offer future stock price predictions, 

underpinned by meticulous market sentiment analysis and regression techniques. 

This innovative approach is designed to furnish investors with real-time actionable 

insights specifically into Costco’s stock performance. 
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1 INTRODUCTION  

The core technical challenge our team is addressing revolves around forecasting 

time-series data, specifically predicting Costco’s stock prices. One of the 

challenging aspects is representing the stock data in a format suit. Choosing the 

optimal window size enough to cover the relevant patterns and not too big for the 

model to learn dependencies is crucial. Preprocessing the volume feature of stocks 

and using it for the prediction of future stock prices is another technical challenge. 

Therefore, transforming this data into sequences that capture historical trends 

while predicting future values like the closing price for the next week is 

complicated. 

Inclusions: 

• Historical stock data of Costco, emphasizing features like opening price, 

closing price, volume, highs, and lows. 

• Application of a sliding window approach to transform time series data into 

sequences for training the LSTM model. 

• Training and evaluation of an LSTM model tailored for weekly stock price 

predictions. 

Exclusions: 

• Real-time events or news sentiments which can influence stock prices. 

• Integration with third-party visualization tools or platforms for displaying 

stock trends. 

• External economic indicators or data from other brands/industries 
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Objectives: 

• To design and implement an LSTM-based model capable of predicting the 

closing stock price of Costco for the upcoming week. 

• To analyze and understand the historical trends and patterns in Costco’s 

stock data. 

• To provide stakeholders with a reliable forecasting tool that aids in 

investment decisions. 

Unique Problems:  

One particularly complicated issue was the determination of the optimal input size 

for the sliding window approach. Selecting the right window size is important 

because it defines the number of previous times steps the model considers while 

making a prediction. Too small a window might not capture enough historical 

context and causing the model to miss longer-term patterns. Conversely, an 

excessively large window might introduce noise and making the model overly 

complex and prone to overfitting. 

Innovative Ideas:  

Our strategy combines current deep learning algorithms with established time 

series forecasting methodologies. One such innovative approach is using of a 

sliding window to convert stock data into sequences appropriate for LSTM training.  

2 METHODOLOGY AND RESULTS 

2.1 Literature Review 

The field of stock price prediction has witnessed a surge in interest and research 

in recent years, driven by the increasing availability of financial data and the 
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potential for leveraging machine learning algorithms to gain insights into the 

dynamic and complex nature of financial markets. Accurate stock price prediction 

holds significant implications for investors, financial institutions, and policymakers 

alike. This literature review aims to provide a comprehensive assessment of 

existing solutions for stock price prediction, shedding light on the strengths and 

weaknesses of different methodologies. In this section, we delve into two 

prominent approaches in the field: Support Vector Machines (SVMs) and Random 

Forest, as showcased in seminal works by Hsu and Lin (2003) and Li et al. (2014) 

respectively. By examining these approaches, we aim to offer valuable insights for 

researchers and practitioners seeking to navigate the ever-evolving landscape of 

stock price prediction algorithms. 

Firstly, the paper called “Stock Price Prediction Using Support Vector Machines” 

written by Hsu and Lin highlights the application of Support Vector Machines in 

stock price prediction, emphasizing their robustness and non-linearity handling 

capabilities. While SVMs offer advantages in certain aspects, they may still require 

careful feature engineering and hyperparameter tuning, and they do not inherently 

capture temporal relationships in stock price data. Researchers and practitioners 

should consider these factors when choosing an algorithm for stock price 

prediction based on their specific requirements and data characteristics. 

There are some strengths evaluated in this paper: 

• SVM Application: This paper explores the application of Support Vector 

Machines (SVMs) to stock price prediction. SVMs are known for their strong 

generalization capabilities and ability to handle high-dimensional data. 

• Robustness: SVMs are less prone to overfitting compared to some other 
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machine learning algorithms. They can provide stable and reliable 

predictions, especially when dealing with noisy financial data. 

• Non-Linearity Handling: SVMs can efficiently handle non-linear 

relationships between input features and stock prices by using kernel 

functions. 

There are some weaknesses evaluated in this paper: 

• Feature Engineering: Like many traditional machine learning approaches, 

SVMs often require manual feature engineering to extract meaningful 

features from raw financial data. 

• Data Sensitivity: The performance of SVMs can be highly sensitive to the 

choice of kernel function and hyperparameters. Selecting the right settings 

may require extensive tuning. 

• Lack of Sequential Modeling: SVMs are not designed for sequential data, 

and they do not inherently capture temporal dependencies present in stock 

price time series. 

Secondly, the paper called “Stock Price Prediction Using Random Forest for the 

SSE Composite Index in China” written by Li et al (2014) highlights the application 

of Support Vector Machines in stock price prediction, emphasizing their robustness 

and non-linearity handling capabilities. While SVMs offer advantages in certain 

aspects, they may still require careful feature engineering and hyperparameter 

tuning, and they do not inherently capture temporal relationships in stock price 

data. Researchers and practitioners should consider these factors when choosing 

an algorithm for stock price prediction based on their specific requirements and 

data characteristics. 
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The proposed solution in the paper, titled "Stock Price Prediction Using Random 

Forest for the SSE Composite Index in China" by Li et al. (2014), focuses on 

applying the Random Forest algorithm to predict stock prices, specifically for the 

SSE Composite Index in China. Random Forest, an ensemble learning method, is 

employed to harness the collective predictive power of multiple decision trees. This 

approach is known for its robustness, ability to handle large datasets, and feature 

importance analysis. 

The study emphasizes the interpretability of Random Forest models, as they 

provide insights into the significance of each feature in influencing stock price 

changes. While Random Forest is not designed for sequential data like deep 

learning models, it offers a computationally efficient alternative, making it suitable 

for stock markets with limited historical data. 

There are some strengths evaluated in this paper: 

• Ensemble Approach: This article applies Random Forest, an ensemble 

learning technique, to predict stock prices for the SSE Composite Index in 

China. The ensemble approach often leads to robust and accurate 

predictions. 

• Feature Importance: Random Forest provides insights into feature 

importance, allowing analysts to identify which variables have the most 

impact on stock price changes. 

• Scalability: Random Forest models can be more scalable and require 

fewer computational resources compared to deep learning methods, 

making them suitable for large datasets. 
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There are some weaknesses evaluated in this paper: 

• Sequential Data Handling: Random Forest is not designed to handle 

sequential data as effectively as deep learning models like LSTM. It may 

struggle to capture subtle temporal patterns. 

• Feature Engineering: Unlike deep learning models that can learn features, 

Random Forest requires manual feature engineering, which can be time-

consuming and may introduce biases. 

• Interpretability Limitations: While Random Forest provides feature 

importance scores, the model's decision-making process can still lack 

transparency compared to some deep learning models. 

Finally, these two studies demonstrate different approaches to stock price 

prediction. The first research project work leverages Machine Learning techniques 

like Support Vector Machines which can easily handle the robust and non-linear 

nature of data but face many issues when choices of feature engineering and 

kernels are considered. In contrast, Li et al.'s study uses Random Forest, an 

ensemble method, with a focus on feature importance and scalability. 

In conclusion, the choice of approach should consider factors such as data 

availability, computational resources, and the specific requirements of the task. 

Researchers and practitioners in stock price prediction should weigh the strengths 

and weaknesses of these approaches when selecting the most appropriate 

algorithm for their needs. Additionally, exploring hybrid models that combine the 

strengths of both deep learning and ensemble methods may offer promising 

avenues for improving predictive accuracy and interpretability. 
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2.2 Proposed Solution 

We propose a time series forecasting solution that utilizes Long Short-Term 

Memory (LSTM) networks which specifically designed to capture long-term 

dependencies in sequence data. Our goal is to predict the closing stock price of 

Costco for the next week based on historical data. 

There are some strengths: 

• LSTMs are designed to recognize and remember long-term patterns, 

making them appropriate for time series data like stock prices. 

• The LSTM model can be easily scaled or modified by adding more layers 

or units to capture complex patterns. 

• By using a sliding window approach, we can efficiently predict stock prices 

for the upcoming week and help investors in making informed decisions. 

There are some weaknesses: 

• The more input you have, it become more complex. While using sliding 

window approaches if we have more input and it will become more complex 

vector. 

• LSTMs are computationally intensive and might require significant 

resources for training especially with large and complex timeseries datasets 

which. 

• LSTMs have various hyperparameters for example, number of layers, units 

and learning rate that need fine-tuning for optimal performance. 

• Due to their complexity, can be overfit to the training data if not regularized 

or trained properly. 



13 

Figure 1. Machine Learning workflow 

 

As shown in Figure 1, the diagram highlights Machine Learning workflow that 

would be used in the context of stock price prediction. There are 8 steps in out 

Machine Learning workflow: 

1. Data Loading: Gathering and loading of the Costco Stock Prices Dataset 

that contains the following columns: Date, Time, Open, High, Low, Close, 

Volume, Brand_Name, Ticker, Industry_Tag, Country, Dividends and Stock 

Splits.   

2. Data Analysis: Analyzing the dataset for highest and lowest stock price of 

Costco per country. Examining for Volume of stocks and how we could 

incorporate volume in prediction of new stock prices.   
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3. Data Cleaning: Checking for columns that very few values in them and 

removing them. Dividends columns has only 83 non-zero values and Stock 

splits has only a single nonzero value. These columns do not have sufficient 

data in them that could contribute to the prediction of our model.   

4. Preparing Data: Performing feature engineering and preparing data in the 

suitable format to be consumed by LSTM model is one of the bigger 

challenges. Selecting the optimal window size for our time series data is 

critical.   

5. Model Training: Training our model on Long Short-Term Memory model 

for our time series forecasting solution.   

6. Evaluating the model: We are dividing the dataset into training and testing 

by keeping the data for last 3 months as our testing data. To evaluate and 

train the model better, we will divide the training data into training and 

validation datasets. Model will be evaluated upon the validation dataset.   

7. Testing the model: Model will be tested upon the last 3 months data, to 

check for testing accuracy. For our model to perform better and get good 

test results, we would have to prepare our data again by making changes 

to parameters and train the model again.   

8. Predicting using Model: The model will then be used for predicting the 

weekly Costco Stock Prices that will be of great value to Costco stock price 

shareholders and help them get an insight into the retail market. 
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2.3 User Role Modeling 

Certainly, for a Costco stock market prediction system focused on simplicity and 

accessibility our user roles might be streamlined to just two primary categories: 

clients, who are the end-users of the system and administrators, who manage and 

maintain the system. 

 

Figure 2. Organizing the user role cards on table 

 

As shown in Figure 2, the diagram highlights the user role cards for “Client”: 

• Active Investor: Active investors typically access the stock market 

prediction system multiple times a day to track market movements, get real-

time analytics, and make timely trades. 

• Strategic Investor:  Strategic investors may not check the system as often 

as active traders, perhaps weekly or monthly, aligning with their long-term 

investment strategies. They tend to have a deep understanding of market 
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fundamentals, economic indicators, and financial forecasting, which allows 

them to plan out long-term investments. 

• Day Trader: Highly active and requiring rapid, reliable information, the day 

trader uses the system frequently throughout the day for immediate data to 

inform swift stock trading decisions. 

• Data Scientist: Analyzes and interprets complex digital data, such as the 

usage statistics of the system. 

• Financial Analyst: An expert who inputs or verifies prediction data and 

algorithms in the system. 

As shown in Figure 2, the diagram highlights the user role cards for 

“Administrator”: 

• System Administrator: Responsible for the maintenance and overall 

functioning of the prediction system. 

• Customer Support Specialist: Provides assistance to clients using the 

system for their stock market predictions. 

 

 

Figure 3. User Role Modelling – User Roles 
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As shown in Figure 3, the diagram highlights two types of user roles i.e., Admin 

and Client. Both roles have permission to “Login” and “Logout” of the system which 

are fundamental functions for access control. However, the Admin has additional 

privileges that include the ability to “Create New User” accounts which is 

suggesting administrative control over user management. Both the Admin and the 

Client can access the “Prediction” function which implies that both roles are 

permitted to view or interact with the Costco stock price (Close) predictions. 

2.4 Frontend User Interface 

There are some elements of the technology stack that used for the project: 

• JavaScript - a scripting language that has built-in support for making HTTP 

requests and handling responses from RESTful APIs in a cloud 

environment. 

• HTML - a standard markup language for creating web pages and web 

applications. It provides a way to organize text, images, links, and other 

elements, allowing for the creation of interactive and dynamic web pages. 

• CSS - a style sheet language used for describing the presentation of a 

document written in HTML. It tells how elements should be displayed on a 

web page, including aspects such as layout, colors, fonts, and spacing. 

• Bootstrap - simplifies the process of building responsive and mobile-first 

websites and web applications. It provides a comprehensive set of CSS and 

JavaScript components for creating user interfaces, including buttons, 

forms, navigation bars, and more. 

• React - a JavaScript library to implement web and native user interfaces. 
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• Heroku – a container-based used for cloud Platform as a Service (PaaS) 

to implement our Frontend project. 

• Platform as a Service (PaaS) - a service that support users into the web 

application lifecycle: building, testing, deploying, managing, and updating.  

There are some mockup user interfaces that they were necessary to implement in 

the project: 

2.4.1 Mockup 1: Home Page 

 

Figure 4. Home Page mockup 
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2.4.2 Mockup 2: Login Page 

 

Figure 5. Login Page mockup 

 

2.4.3 Mockup 3: Welcome Page 

 

Figure 6. Welcome Page mockup 
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2.4.4 Mockup 4: Stock Price Predictions Page 

 

Figure 7. Stock Price Predictions Page mockup 

2.4.5 Frontend Implementation 

To implement the interface, we use the Heroku platform. Figure 8 shows the Stock 

Price Predictions web page. 

 

Figure 8. Frontend - Welcome Page 
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Figure 9. Frontend – Stock Price Predictions Page 

2.5 Cloud Backend 

There are some elements of the technology stack that used for the project: 

• Python - a backend programming language that will be used to create the 

RESTful API, define functions, and integrate with Azure services. 

• Azure Blob Storage - A scalable object storage service that will be used to 

store the H5 model. 

• Azure SQL Database - A fully managed relational database service that is 

suitable to store the users, roles, historical predictions. 

• Azure Functions - A serverless compute service that enables us to run 

even-driven code without managing infrastructure. 

• RESTful API - A microservices architecture that will be used to create a 

scalable and flexible system for managing the predictions of stock prices. 
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• Function as a Service (FaaS) - a serverless architecture that allows for 

automatic scaling and cost optimization.  

2.5.1 Architecture Design Graph – High Level 

 

Figure 10. Cloud Backend Architecture Design – High Level 

2.5.2 Architecture Design Graph – Low Level 

 

Figure 11. Cloud Backend Architecture Design – Low Level 
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2.5.3 Cloud Backend Implementation 

To deploy the backend in the cloud, we developed a Python application using 

version 3 to create the API in the Azure Function. We use the Azure Function 

service to map our API to the Azure cloud. In this API, we define a function called 

"get_predictions" that returns an HTTP response with the expected results 

(prediction values, prediction graph, and model summary). 

This is the expected HTTP response format: 

 

Figure 12. Cloud Backend – API Successful Response 

 

If there is an unexpected error in the execution, this is the expected result: 

 

Figure 13. Cloud Backend – API Failure Response 
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Figure 14 shows the file structure for deploying a function app to Azure. There are 

3 important files: 

• final-model.h5: This file is the model of our AI project. 

• function_app.py: In this file, we defined the structure of the Function App 

in Azure. Furthermore, we defined the API methods that we needed to 

implement, in our case “get_predictions”. 

• requirements.py: In this file, we defined the python libraries that we need 

to use in the execution of our python script. 

 

 

Figure 14. Cloud Backend – Function App structure 

 

Figure 15 shows the response of the "get_predictions" API method. This output 

displays a JSON format with the prediction values and prediction graph in bytes 

(base 64) format. This API method is used in the Frontend to display the prediction 

values and plot the graph. 
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Figure 15. Cloud Backend – API Response  

2.6 DataFrame Step 

The dataset being used is sourced from Kaggle and is titled “World Stock Prices 

(daily updating)”. 

Source: World stock prices (daily updating). Kaggle. 

https://www.kaggle.com/datasets/nelgiriyewithana/world-stock-prices-daily-

updating/data 

This dataset offers a rich historical record of stock prices for many globally 

recognized brands. The data spans from January 1st, 2000, to the present, which 

provides a deep and extensive timeline of stock market movements for various 

global entities. 

https://www.kaggle.com/datasets/nelgiriyewithana/world-stock-prices-daily-updating/data
https://www.kaggle.com/datasets/nelgiriyewithana/world-stock-prices-daily-updating/data
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Key features of the dataset include: 

• Date: The specific day of the stock price data. 

• Open: The opening price of the stock on that date. 

• High: The highest price the stock attained during the trading day. 

• Low: The lowest price the stock reached during the trading day. 

• Close: The closing price of the stock on that date. 

• Volume: The trading volume, indicating the number of shares traded on 

that date. 

• Dividends: Information on dividends paid out on that date, if applicable. 

• Stock Splits: Details about any stock splits occurring on that date. 

• Brand_Name: The name of the brand or company. 

• Ticker: The stock’s ticker symbol. 

• Industry_Tag: The industry category or sector the brand is associated with. 

• Country: The country where the brand is primarily based or operates. 

 For our project, we are focusing on Costco’s stock data extracted from this 

comprehensive dataset. 

2.7 Transformer Step 

2.7.1 Feature Extraction Approach 

• Correlation Heatmap Analysis:  

Prior to feature selection, a correlation heatmap helped us to analyze the 

relationships between different variables in the dataset. This visual tool 

helps identify which features are most strongly correlated with the stock’s 
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closing price which is our target variable in stock price prediction models. 

After careful examination of the heatmap, we made the decision to select 

‘Open’, ‘High’, ‘Low’ and ‘Close’ as the primary features for our predictive 

model, given their strong intercorrelations and direct impact on stock price 

movements.  

 

Figure 16. Correlation Heatmap 

• Rationale for Feature Removal: 

o Volume Column:  

The decision to remove the ‘Volume’ column can be justified based 

on its dependency on real-time events and news sentiments. Stock 

trading volume can be significantly influenced by factors like tweets 

from influential figures, news events and statements from stock 

market experts. Since these elements are external and dynamic, 

they are not consistently captured in historical data, thus making the 

‘Volume’ feature less reliable for predictive modeling in this context. 

o Other Columns:  
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Similarly for other columns like ‘Brand_Name’, ‘Ticker’, 

‘Industry_Tag’, ‘Country’, ‘Dividends’ and ‘Stock Splits’, the heatmap 

analysis indicated a very weaker correlation with ‘Close’ as the target 

variable. 

This approach ensures that the model focuses only on the most relevant features 

that have a more direct relationship with stock prices. It also helps in avoiding the 

noise and potential overfitting that could arise from including less relevant or more 

volatile features. 

2.7.2 Data Cleaning Approach 

• Date Parsing and Indexing: 

We begin by converting the ‘Date’ column into a proper datetime format and 

setting it as the index. This ensures chronological integrity and enables us 

to leverage time series functionalities within pandas. 

• Handling Missing Values: 

Prior to normalization, we checked and addressed any missing values in 

our selected features. This step is critical to prevent any bias or inaccuracies 

in the model training phase. 

• Consistency and Integrity: 

Throughout the cleaning process, we maintain consistency and integrity of 

the data by ensuring that all operations are uniformly applied to the entire 

dataset. This uniformity is crucial for the model to learn accurately from the 

data. 
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2.7.3 Data Pre-processing Approach 

• Data Normalization:  

We apply the Min-Max scaler to normalize the data. This step is essential 

to ensure that the numerical range of our feature data is scaled to a uniform 

range of [0, 1]. This normalization helps in the acceleration of the model’s 

progress during training and helps in preventing biases towards any outlier 

values. 

• Train-Test Split: 

We divide the dataset into training and testing sets with the most recent 

data withheld as the test set. This is to simulate a realistic scenario where 

the model predicts future stock movements based on historical data it has 

not seen before. 

• Window Size: 

We define a window size of 20 days based on team decision. This window 

size is considered ideal as it includes enough historical data to detect trends 

and patterns for model to process. 

• Dataset Structuring for Time Series: 

The data is structured into a format where the input features are the stock 

prices of the past 20 days, and the target is the ‘Close’ stock price of the 

following day. This transformation is crucial for the LSTM network to 

understand and learn from the temporal structure of the data. 

2.8 Estimator Step: Architecture   

Below is the architecture of our model. 
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Figure 17. Model Architecture  

 

The Input Layer has dimensions of 20 and 4 where 20 represents the number of 

time steps i.e. window size in each input sequence and 4 is the number of features 

for each time step. In this case, it corresponds to the number of columns in the 

dataset, which are 'Open', 'High', 'Low', and 'Close'. There is only one LSTM layer 

with 300 units. The LSTM layer is followed by a Dense layer with 1 unit. This Dense 

layer serves as the output layer and is responsible for producing the final 

prediction. The Dense layer has only 1 unit because the task is framed as a 

univariate regression problem, predicting a single value (Close price) for each input 

sequence. By default, the LSTM layer uses a hyperbolic tangent (tanh) activation 

function, and the Dense layer has no specified activation function, implying a linear 

activation. 
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Some of the strengths of this model are: 

• Long-Term Pattern Recognition:  

LSTMs excel in recognizing and remembering long-term patterns, a crucial 

factor for time series data like stock prices. This strength enhances the 

model's ability to capture underlying trends and patterns in the data. 

• Scalability and Flexibility: 

The LSTM model's flexibility allows for easy scaling or modification by 

adding more layers or units, adapting to the complexity of the data. This 

adaptability enhances the model's capacity to handle varying degrees of 

complexity, contributing to improved generalization across different 

datasets and market conditions. 

• Sliding Window Approach: 

The sliding window approach efficiently predicts stock prices for upcoming 

periods, aiding investors in decision-making. By capturing temporal 

dependencies, this approach helps the model generalize well to future time 

steps, supporting informed decisions based on historical patterns. 

Some of the weaknesses of this model are: 

• Input Complexity: 

The model's complexity increases with more input features, especially using 

sliding window approaches. Higher input complexity may lead to challenges 

in generalization, as the model might struggle to extract relevant information 

from a more complex input vector, potentially impacting its performance on 

unseen data. 

• Computational Intensity: 
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LSTMs can be computationally intensive, particularly with large and 

complex datasets. The resource-intensive nature of training may limit the 

model's ability to generalize quickly to new data, especially in real-time 

scenarios. 

• Hyperparameter Tuning: 

LSTMs have various hyperparameters that require fine-tuning for optimal 

performance. Inaccurate hyperparameter tuning may hinder generalization. 

• Overfitting Risk: 

Due to their complexity, LSTMs can be prone to overfitting if not regularized 

or trained properly.  

In summary, while LSTMs offer powerful tools for time series prediction, careful 

consideration of their strengths and weaknesses is crucial to achieving robust 

generalization to unseen data. 

2.8.1 Estimator Step: The Learning Algorithm & Cost Function 

The learning algorithm used in this code is the Long Short-Term Memory 

(LSTM), which is a type of Recurrent Neural Network (RNN). LSTM is specifically 

designed to avoid the long-term dependency problem, making it suitable for 

processing and predicting time series data. 

The cost function optimized in this code is the Mean Squared Error (MSE). It is 

a popular loss function for regression problems and is calculated as the average 

squared difference between the predicted and actual values. The goal of the 

optimization process is to minimize this error, resulting in a model that can make 

predictions as close as possible to the actual values. 
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The optimizer used in this code is Adam. Adam is an optimization algorithm that 

can be used instead of the classical stochastic gradient descent procedure to 

update network weights iteratively based on training data. Adam is a popular 

algorithm in the field of deep learning because it is straightforward to implement, 

computationally efficient, has little memory requirements, is invariant to diagonal 

rescale of the gradients, and is well suited for problems that are large in terms of 

data and/or parameters. 

2.8.2 Estimator Step: Hyperparameters and Fine Tuning 

The hyperparameters in this system include: 

• Number of LSTM units: 300.  

This is the dimensionality of the output space of LSTM layer, or in other 

words, the number of LSTM cells or neurons in each LSTM layer. 

• Look-back period: 20. This is the number of previous time steps to use as 

input variables to predict the next time period. 

• Batch size: 64. 

This is the number of samples per gradient update, i.e., the number of 

training examples utilized in one iteration. 

• Number of epochs: 100. 

An epoch is an iteration over the entire training data provided. 

• Learning rate: 0.01. 

This is used in the Adam optimizer and determines the speed of learning. 

• EMA momentum: 0.9. 

This is also used in the Adam optimizer and refers to the exponential decay 
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rate for the first moment estimates. 

The approach used to train the dataset to maximize its generalization capability 

includes: 

• Normalization: 

The data is normalized to a range between 0 and 1 using the MinMaxScaler. 

This ensures that all input features have the same scale, which can speed 

up learning and can lead to better performance. 

• Batch training: 

The model is trained using a batch size of 64. This means that the model 

weights are updated after each batch of 64 samples. 

• Epochs: 

The training process is run for a total of 100 epochs, meaning the whole 

dataset is passed forward and backward through the neural network 100 

times. 

• Adam optimizer: 

The Adam optimization algorithm is used to update network weights 

iteratively based on training data. It is computationally efficient and well 

suited for problems that are large in terms of data and/or parameters. 

• MSE loss function: 

The mean squared error (MSE) loss function is used, which is suitable for a 

regression problem. It calculates the average squared difference between 

the predicted and actual values. 

• Prediction for next 7 days: 

The model is used to predict the closing price for the next 7 days based on 
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the last known data. This is done by feeding the last known data back into 

the model and appending the new prediction to the end of the data. 

2.9 Evaluator Step: Training and Testing 

2.9.1 Visual Evaluation 

The visual assessment involves plotting the actual 'Close' prices against the 

predicted prices for both the training and test (next 7 days) datasets. The plots 

serve as an intuitive gauge of the model's predictive accuracy. 

 

 

Figure 18. Prediction for the Test Set and Next Week 

 

• Training Set Visualization: 

The model's training predictions are plotted with the actual prices. This plot 

is crucial to visually confirm that the model has learned the underlying 

patterns in the historical data. 

• Test Set Visualization:  
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For the test set, which the model has not seen during training, the 

predictions are similarly plotted against the actual prices. The distribution of 

these points indicates how well the model generalizes to new, unseen data. 

2.9.2 Quantitative Analysis 

Quantitative evaluation is conducted using the Root Mean Squared Error (RMSE) 

metric, which provides a clear indication of the model's performance in numerical 

terms. 

 

Figure 19. Accuracy Scores for Training and Testing Sets 

 

• Training Performance: 

A low RMSE (3.38) on the training set suggests that the model has a good 

fit to the historical data. 

• Testing Performance: 

The difference (4.83) between the training and testing RMSE provides 

insight into whether the model is overfitting to the training data or if it has 

learned general patterns that apply to the unseen data.  

In our case the RMSE is relatively low, but in terms of stock prices this can cause 

quite a shift due to high volumes of stock being purchased. The model has learned 

general patterns that apply to unseen data, but also should not be entirely 

depended on due to the volatility of the real stock market. 
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3 Future Works 

There are some future works that we could consider as improvements to our 

project: 

• Expanding the Dataset 

We intend to add more diverse features to our dataset. This includes 

economic indicators, news about the company, and market sentiment data. 

These additional features can provide a deeper understanding of factors 

influencing stock prices, potentially improving the accuracy of our 

predictions. 

• Real-Time Data Integration 

Our goal is to develop a system that can handle live data. This means our 

model will be able to make predictions based on the most current 

information. Stock markets are dynamic and change rapidly. Real-time data 

integration will allow our model to adapt to these changes, providing more 

timely and relevant predictions. 

• Risk Management 

We aim to create strategies that can identify and reduce the risks associated 

with using our stock price prediction model. Predicting stock prices is 

inherently risky. By understanding and managing these risks, we can make 

our model safer and more reliable for users. 

• User Experience Enhancement 

We plan to improve the interface of our application to make it more user-

friendly and accessible to a wider audience. A better user experience 

means that more people can use our tool effectively, which is crucial for 
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both casual investors and professionals. 

• Cross-Industry Application 

We want to test and adapt our model to predict stock prices for companies 

in different industries and sectors. This will show how versatile and robust 

our model is. If it works well across various sectors, it can be a more useful 

tool for a broader range of users. 
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5 CREDITS, LICENSE, AND REFERENCES 

5.1 Credits 

Provide any credits here. The following are examples: 

Author of the template graphic layout: Hao Lac 

5.2 License 

State the license granted with your system. For example: 

Permission is granted to copy, distribute and/or modify this document under the 

terms of the GNU Free Documentation License, Version 1.1 or any later version 

published by the Free Software Foundation; with no Invariant Sections, with no 

Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is 

included in the appendix entitled "GNU Free Documentation License". 

5.3 References 

[1] TAC: Technology Accreditation Canada, 

https://www.technologyaccreditation.ca/. 

 


